

Промышленное Оборудование

КАТАЛОГ ХОЛОДИЛЬНОГО ОБОРУДОВАНИЯ

Содержание				
	24			
О компании	04			
Системы с воздушным охлаждением	06			
Системы с водяным охлаждением	08			
Инверторная технология	10			
Сезонная эффективность	12			
Надежность и эффективность	14	1000		
Улучшенная практичность	16			
Воздушное охлаждение	18			
Конденсаторный блок	112			
Водяное охлаждение	118			
Системы с выносным конденсатором	144	1000		
Фанкойлы	156		- 1/	
Вентиляционные установки	178			
Системы управления, опции и аксессуары	190	1000		
Условия измерения	203	-		
	Į			
	No.			
THE RESERVE AND PERSONS ASSESSED.				
STATE OF THE PARTY				
THE RESERVE AND ADDRESS OF THE PERSON NAMED IN			(3)	
		\sim		
THE RESERVE AND ADDRESS OF THE PERSON NAMED IN				
-				
				W. 1
			-	33
		1000		

Системы Daikin могут успешно использоваться в самых разных областях для обеспечения необходимого микроклимата в помещениях любого размера: на промышленных участках, в розничных магазинах, гостиницах и универмагах.

Тщательная разработка максимально подходящих комбинаций компрессор/хладагент позволила компании Daikin наладить производство целого модельного ряда холодильных машин, оптимизированных для использования с хладагентами R-134a и R-407C и R-410A.

Благодаря новейшим технологиям холодильные машины Daikin обеспечивают исключительную гибкость и качество управления. Не имеющие себе равных в отношении точности, мощности, низкого уровня шума, легкости в техобслуживании и низких эксплуатационных затрат, холодильные машины Daikin обеспечивают микроклимат, который отличается комфортом, чистотой и постоянством.

Как изготовитель, который производит собственные компрессоры и хладагенты, компания Daikin полностью контролирует весь процесс производства. Daikin также предлагает полный ассортимент блоков обработки воздуха для удовлетворения современным требованиям по высокому уровню качества воздуха в помещении.

Это то уникальное сочетание передовых технологий, опыта, надежности которое делает холодильные машины Daikin идеальным выбором для профессионалов.

В мае 2009 года был открыт Центр разработки холодильных установок Daikin, известный во всем мире своими передовыми исследованиями и разработками систем отопления, кондиционирования и вентиляции (HVAC). Задачей этого нового центра является разработка и испытания новых холодильных машин, компрессоров и других технологий этой отрасли, позволяющих сократить потребление энергии и выбросы углерода в окружающую среду.

THE DAIKIN GROUP – ГЛОБАЛЬНЫЙ ЛИДЕР НА РЫНКЕ СИСТЕМ ОТОПЛЕНИЯ И КОНДИЦИОНИРОВАНИЯ

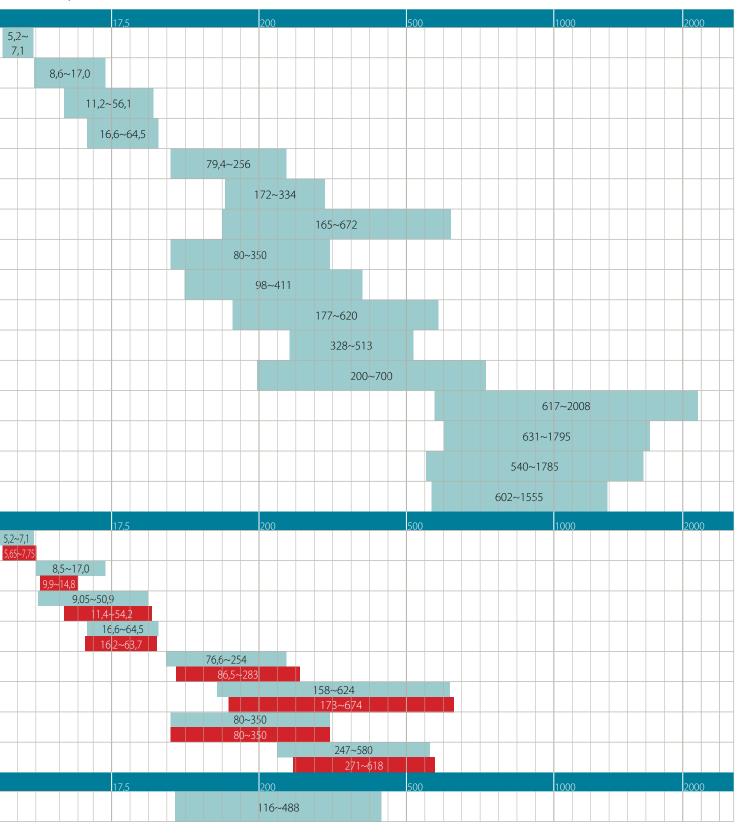
Daikin - лидер в разработке технологий, способствующих защите окружающей среды, экономии энергии и гарантирующих надежность своим клиентам. Практичные максимальную холодильные машины Daikin обеспечивают эффективность в коммерческих, общественных и промышленных зданиях. Центр разработки холодильных машин позволяет Группе Daikin эффективно использовать эти сильные стороны и ускорить разработку холодильных машин, не имеющих вредного воздействия на окружающую среду и позволяющих экономить энергию, способствующих инновациям, лидерству и максимальному комфорту покупателя. The Daikin Group уже является лидирующим поставщиком в сфере строительных проектов, сертифицированным LEED®.

Центр разработки холодильных машин Daikin

Эффективный комплекс работает без вредного влияния на окружающую среду и для максимального комфорта покупателя

ЦЕНТР РАЗРАБОТКИ ХОЛОДИЛЬНЫХ МАШИН

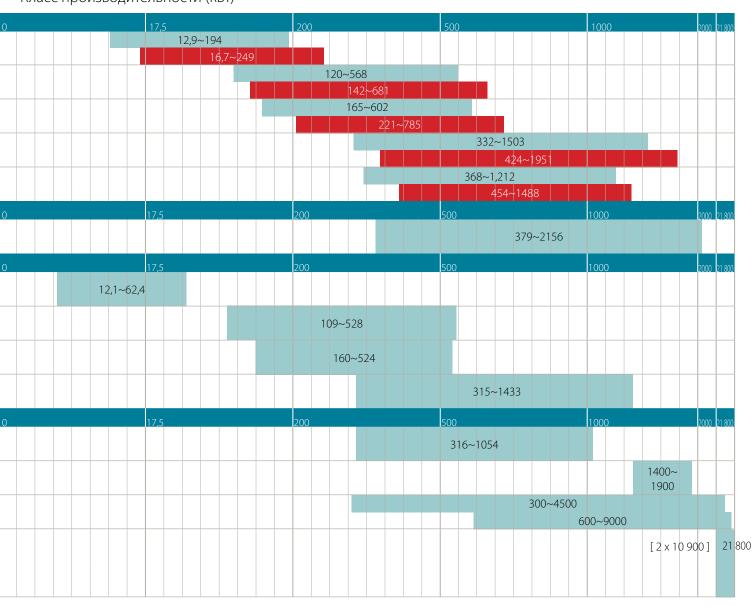
Научно-исследовательский центр площадью 4600 кв.метров в Миннеаполисе, шт. Миннесота, располагает шестью испытательными камерами и местом для двух дополнительных камер для будующих проектов. Здесь проверяется электрическое напряжение для всего мира, частоты и различные элементы окружающей атмосферы во время испытаний (температура и влажность). Центр разработки холодильных установок может воспроизвести электрическое напряжение и микроклимат здания в любой точке мира, позволяя тем самым разработать исходную конструкцию новых изделий. Эти 'глобальные модели' далее модифицируются для соответствия требованиям рынка в имеющихся региональных центрах по всему миру.


СЕРТИФИКАЦИЯ LEED® GOLD

Совет по защите экологии США выдал Центру разработки холодильных машин Daikin сертификат о защите окружающей среды и экономии электроэнергии (LEED) Gold. Более 90% энергии здания, выработанной технологическими потребителями (напр., используя горячую и холодную воду для испытаний холодильных машин и компрессоров), экономия энергии достигнуты в основном благодаря рекуперации 75% этой энергии и ее возврата в систему. Среди многочисленных экологических характеристик достойное место занимают водосберегающее ландшафтное проектирование, использование переработанного строительного мусора, утилизация составных частей, а также дальнейшее их использование для внутренних поверхностей, экологически безопасных герметиков и материалов местной закупки.

				Ко	мпресс	ор	Эфо	фективн	ная мод	ель		Уровен	нь шума]
	Хладагент	ИНВЕРТОР	— Естественное » охлаждение	Изм. полож.	Спиральный	🐙 Винтовой	Стандартный	Bыc.	Премиум	Высокая температура окружающей среды	Стандартный	Низк.	Уменьшенный	Сверх-низк.	
Только охлаждение															0
EWAQ~ADVP	R-410A	√ 		√ 							√ 				
EWAQ~ACV3/ACW1	R-410A	√			✓		√				√				
EUWA*~KBZW1	R-407C				√						√				
EWAQ~BA*	R-410A	✓			√		√				√				
EWAQ~DAYN	R-410A				√		✓				√				
EWAQ~E-	R-410A				✓			✓			√	✓	✓		
EWAQ~F-	R-410A				✓		✓	✓			√	✓	✓		
EWAQ~GZ HOBUHKA	R-410A	√			✓			✓			√		✓		
EWAD~E-	R-134a					✓	✓				√	✓			
EWAD~D-	R-134a					✓	✓	✓		✓	√	✓	✓	✓	
EWAD~BZ	R-134a	√				✓	✓	✓			√	✓	✓		
EWAD~TZ HOBUHKA *	R-134a	√				✓	✓	✓			√		✓		
EWAD~C-	R-134a					✓	✓	✓	✓		✓	✓	✓		
EWAD~CZ	R-134a	√				✓		√			✓	✓	√		
EWAD~DZ HOBUHKA *	R-134a	√				✓		√			✓	✓		✓	
EWAD~CF	R-134a		✓			✓		√			✓	√	√		
Тепловой насос															0
EWYQ~ADVP	R-410A	√		√			√				√				
EWYQ~ACV3/ACW1	R-410A	√			√		✓				√				
EUWY*~KBZW1	R-407C				✓		✓				√				
EWYQ~BA*	R-410A	√			✓		√				√				
EWYQ~DAYN	R-410A				✓		✓				√				
EWYQ~F НОВИНКА	R-410A				√			✓			✓	✓	✓		
EWYQ~GZ HOBUHKA	R-410A	✓			√			✓			√		✓		
EWYD~BZ	R-134a	✓				✓	✓				✓	✓			
Конденсаторный блок															0
ERAD~E-	R-134a					✓	√				√	✓			

Модельный ряд продукции ВОЗДУШНОЕ ОХЛАЖДЕНИЕ

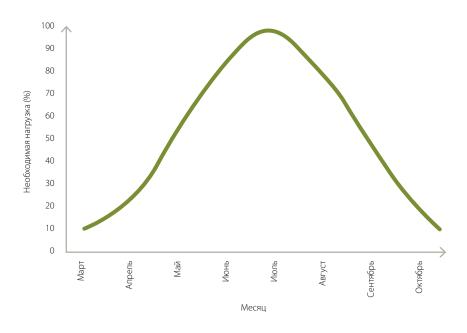

Класс производительности (кВт)

Модельный ряд продукции водяное охлаждение

Холодильные				Компрессор		Эффективі	ная модель	Уровень шума
машины с водяным охлаждением	Хладагент	MHBEDTOD	Спиральный	Винтовой	—————————————————————————————————————	Стандартный	Выс.	Стандартный
Холодильные машины с водяны	ім охлаждениє	ем (только охла І	аждение и тол	ько отопление) 				
EWWP~KBW1N	R-407C		√			√		
EWWD~J-	R-134a			✓		✓		✓
EWWD~G-	R-134a			✓		✓	✓	✓
EWWD~I-	R-134a			✓		√	✓	✓
EWWD~H-	R-134a			✓			√	✓
Холодильные машины с водяны	ім охлаждениє	ем конденсатор	ра (только охл	аждение)				
EWWQ~B-	R-410A			√		✓	√	√
Холодильные машины с выносн	ым конденсат	ором (бесконд	енсаторные)					
EWLP~KBW1N	R-407C		√			√		√
EWLD~J-	R-134a			√		✓		√
EWLD~G-	R-134a			✓		√		√
EWLD~I-	R-134a			✓		√		√
Центробежные холодильные ма	ашины с водян	ым охлаждени Г	ем конденсато	opa				
EWWD~FZ	R-134a	√			✓		√	√
DWME	R-134a	√			√		✓	√
DWSC DWDC	R-134a	опция			√		✓	√
6000 RT НОВИНКА ЦЕНТРОБЕЖНЫЙ	R-134a				√		√	√

Класс производительности (кВт)

Инверторная Технология

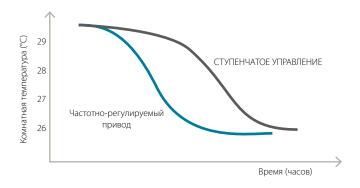

Традиционные электродвигатели могут работать при полной нагрузке, даже если в этом нет необходимости, приводя тем самым к потерям энергии.

В любом здании больше всего потребляют энергию системы кондиционирования и отопления, а отопительная и холодильная нагрузка варьируется на протяжении года в зависимости от системы, экономия электроэнергии становится очень важной задачей, особенно в результате быстрорастущих цен на энергию и угрозы глобального потепления.

Частотно-регулируемый привод (VFD) позволяет использовать только ту мощность, которая соответствует реальной нагрузке, и представляет собой высокоэффективное решение для систем кондиционирования и отопления (компрессоров, вентиляторов и насосов).

Большую часть времени работы холодильной машины холодопроизводительность, требуемая в любом здании, ниже чем в режиме максимальной нагрузки, в зависимости от профиля нагрузки здания.

Чем больше колебаний нагрузки в течение года, тем важнее становится эффективность работы машины.



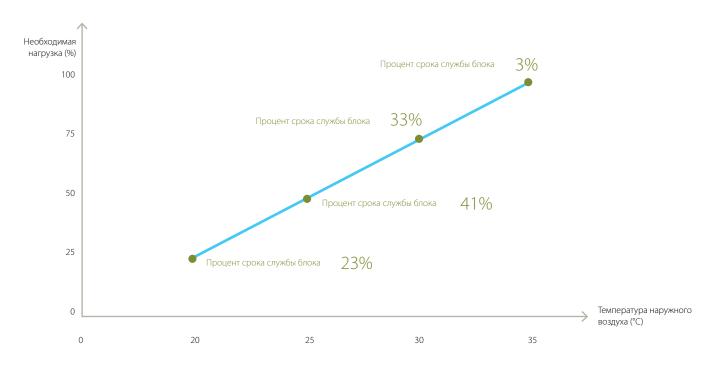
Инверторная технология обеспечивает максимальную энергоэффективность и быстрое достижение соответствующего уровня комфорта

ОСНОВНЫЕ ПРЕИМУЩЕСТВА

- Энергоэффективность: коэффициент сдвига фаз всегда > 0.95 Обычно коэффициент мощности двигателя постепенно понижается при уменьшении выходной мощности. Однако благодаря инвертору нет необходимости в дополнительной корректировке коэффициента мощности, так как он всегда остается неизменным > 0,95
 - и отсутствуют скачки напряжения, благодаря чему сокращаются расходы.
- Менее частые запуски/остановки и низкий пусковой ток Инверторная технология гарантирует меньше запусков/ остановок, а также контролирует, чтобы пусковой ток всегда был ниже тока, потребляемого в условиях максимальной производительности (FLA). Это, конечно же, ведет к сокращению расходов.
- Тихая работа: пониженный уровень шума Низкий уровень шума при частичной нагрузке достигается путем изменения частоты вращения компрессора, обеспечивая тем самым минимальный уровень шума в любое время.
- Быстрый запуск: время запуска сокращено на 1/3 Возможность изменять выходную мощность позволяет достигать требуемых параметров намного быстрее. Холодильная машина с инверторным управлением может достигать требуемых параметров в 1/3 быстрее по сравнению с традиционными системами.

Все эти преимущества позволяют сократить эксплуатационные расходы и быстро окупить затраты.

Сезонная Эффективность


На сегодняшний день компания Daikin является ведущим производителем самых эффективных и экономичных систем, создающих комфорт. Вся продукция Daikin для жилых, коммерческих и промышленных помещений отличаются своей сезонной эффективностью: это позволяет эффективно сократить потребление энергии и эксплуатационные расходы.

СЕЗОННАЯ ЭФФЕКТИВНОСТЬ

Европейский коэффициент сезонной энергоэффективности (ESEER) - это признанный в Европе параметр оценки годовой производительности.

Он высчитывается по специальной формуле, учитывающей изменение EER в зависимости от коэффициента нагрузки и изменения температуры поступающего воздуха.

ESEER = A*EER100% + B*EER75% + C*EER50% + D*EER25%

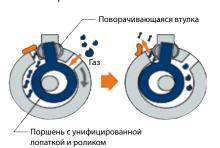
 Со следующими весовыми коэффициентами:
 Для следующих условий частичной нагрузки холодильной машины с воздушным охлаждением:

 A = 0,03 (3%)
 35°C

 B = 0,33 (33%)
 30°C

 C = 0,41 (41%)
 25°C

 D = 0,23 (23%)
 20°C


Каждый день Надежность и эффективность

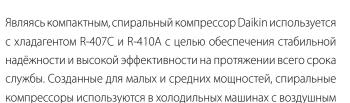
СОБСТВЕННАЯ РАЗРАБОТКА И ПРОИЗВОДСТВО КОМПРЕССОРОВ

В отличие от многих других производителей кондиционеров воздуха, компания Daikin производит и свои компрессоры. Это важно, потому что компрессор является основным элементом системы кондиционирования воздуха, увеличивая давление и температуру паров хладагента и эффективно накапливая теплоту в системе. Компания Daikin всегда отличалась своей технологией производства компрессоров и сейчас предлагает огромный ассортимент ротационных, спиральных, винтовых и центробежных компрессоров. В результате, компрессоры с инверторным управлением применяются во всем нашем модельном ряде. Это гарантия непревзойденного комфорта и эффективности системы.

ротационный

РОТАЦИОННЫЙ КОМПРЕССОР:

Мини-чиллеры EWAQ005-007ADVP и EWYQ005-007ADVP оснащены ротационным компрессором. Инновационная конструкция компании Daikin с меньшим количеством подвижных деталей обеспечивает более плавную и надежную работу при низких уровнях вибрации и шума. Высокоэффективный двигатель снижает потребление энергии, что позволяет сэкономить затраты на электроэнергию.


НОВЫЙ ЦЕНТРОБЕЖНЫЙ КОМПРЕССОР БЕЗ ТРЕНИЯ:

СПИРАЛЬНЫЙ КОМПРЕССОР

С РЕГУЛИРУЕМОЙ ПРОИЗВОДИТЕЛЬНОСТЬЮ:

спиральный

и водяным охлаждением в диапазоне мощностей от 8,6 до 675кВт.

Технические данные:

- > Компактное, простое, тем не менее, надёжное исполнение
- Отсутствие клапанов и кривошипно-шатунного механизма,
 что обеспечивает максимальную надёжность
- > Постоянное сжатие, гарантирующее низкое потребление энергии
- Повышенный коэффициент полезного действия компрессора, благодаря отсутствию повторного объёмного расширения
- > Низкий уровень звукового давления
- > Низкий пусковой ток

Независимо от требований заказчика к системе - постоянной производительности для больших систем или гибкости для небольших систем, компания Daikin всегда предлагает надежное и эффективное решение.

Новый центробежный компрессор без трения имеет встроенный электропривод с частотным регулированием (VFD) и магнитные подшипники, а также обеспечивает высокую эффективность и надежность блока. Одна движущаяся часть компрессора - вал ротора и рабочие колеса - приводится в движение магнитоэлектрическим приводом двигателя и приподнимается системой магнитного подшипника с цифровым управлением. Такое сокращение движущихся частей значительно увеличивает надежность блока и сокращает эксплуатационные расходы. При спаде температуры конденсации и/или нагрузки на систему охлаждения скорость вращения сокращается, и подвижные входные лопатки, активизируемые шаговым двигателем, направляют поток газа в рабочее колесо первой ступени при достижении компрессором минимальной скорости. Это позволяет улучшить эффективность и сократить расходы в режиме частичной нагрузки.

ОДНОВИНТОВОЙ КОМПРЕССОР С ПЛАВНЫМ РЕГУЛИРОВАНИЕМ МОЩНОСТИ ДЛЯ ВЫСОКОЙ ПРОИЗВОДИТЕЛЬНОСТИ:

Сердцем больших холодильных машин фирмы Daikin является полугерметичный одновинтовой компрессор, разработанный, проверенный и изготовленный в лабораториях Daikin с целью достижения высочайших показателей производительности, эксплуатационных параметров и технического обслуживания. Этот компрессор был специально разработан для работы с хладагентом R-410A, R-134a или R-407C, что гарантирует непревзойденную надежность и эффективную работу в течение многих лет. Срок службы подшипника составляет 100 000 часов с интервалами для профилактики и технического обслуживания каждые 40 000 часов.

Технические данные:

- Оптимальные рабочие характеристики благодаря бесступенчатому регулированию мошности в зависимости от температуры охлажденной воды. Регулирование мощности является непрерывным в диапазоне от 30% до 100% для одноконтурных блоков, и от 15% до -100% для двухконтурных блоков.
- Компактная, простая, надёжная конструкция.
- При применении одного главного винта и двух сателлитов, осевые и радиальные силы сбалансированы благодаря симметричной компрессии, гарантирующей малые нагрузки на подшипники.
- Двустенный дизайн корпуса со встроенным маслоотделителем, известный своим низким уровнем шума, обеспечивает дополнительное снижение шума.
- Сателлиты выполнены из полимерного материала, что позволяет уменьшить зазоры и снижает трение, существенно увеличивая эффективность и срок службы компрессора.
- Масляный насос отсутствует, смазка работает за счет перепада давления.

Нагнетательный патрубок

Алюминиевая охлаждающая пластина

Патрубки

и впрыска

- Лёгкий доступ к компрессору и защитным устройствам
- Пускатель "звезда" "треугольник" с низким пусковым током в стандартном исполнении

ВИНТОВОЙ КОМПРЕССОР С ИНТЕГРИРОВАННЫМ ИНВЕРТОРОМ

ИНВЕРТОР

Всасывающий патрубок

впрыска жидкости (охлаждение VFD)

Технические данные:

- Компрессор и инвертор полностью разработаны компанией Daikin
- Инвертор встроен в корпус компрессора
- Инвертор охлаждается хладагентом
- VVR = переменная объемная
- производительность для оптимизации энергоэффективности
- Увеличенные патрубки всасывания и нагнетания для сведения к минимуму перепада давления хладагента
- Новые оптимизированные электродвигатели компрессора

Основные преимущества:

- Лучшие показатели ESEER и EER
- На 30% компактнее по сравнению с одновинтовым компрессором
- Быстрый период окупаемости
- Тихая работа
- Оптимальные уровни комфорта

Более практичный

СТАНДАРТНОЕ АНТИКОРРОЗИОННОЕ ПОКРЫТИЕ

В стандартном исполнении конденсаторы для холодильных машин с воздушным охлаждением имеют антикоррозийное покрытие. Это покрытие значительно увеличивает устойчивость к внешним воздействиям и солевой коррозии. В зависимости от мощности и модели покрытие может быть следующих типов:

Пример акрилового покрытия

Акриловое покрытие (обозн. Daikin PE)

Алюминиевое оребрение покрыто акриловой смолой и гидрофильной плёнкой.

Эпоксидное покрытие

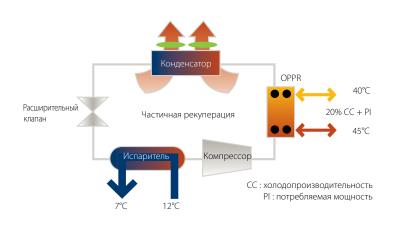
Алюминиевое оребрение покрыто чёрной эпоксидной смолой.

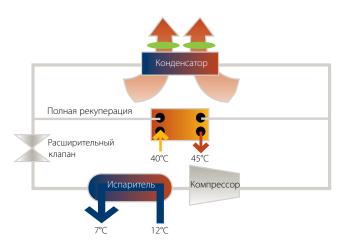
РЕКУПЕРАЦИЯ ТЕПЛОТЫ

Зачастую многие помещения требуют как охлаждения, так и обогрева. Для того чтобы использовать это эффективно, компания Daikin предлагает холодильные машины с функцией рекуперации теплоты. Благодаря этой функции можно увеличить практичность помещения и расширить возможности гостиничных комплексов и объектов для отдыха, а также на промышленных и производственных участках.

Рекуперация полезной теплоты в режиме охлаждения, которая в других режимах работы просто выбрасывается, позволяет значительно увеличить показатели СОР в режиме рекуперации теплоты. Блок с функцией рекуперации теплоты позволяет достичь оптимального баланса охлаждения и рекуперации теплоты и максимальной эффективности блока. При этом вы недорого сможете нагревать воду для бытовых нужд.

В зависимости от температурных требований, можно выбрать режим частичной или полной рекуперации теплоты.


ВОЗДУШНОЕ ОХЛАЖДЕНИЕ

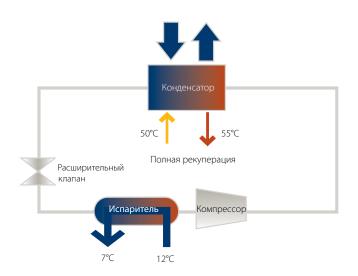

OPPR - Частичная рекуперация теплоты

Между компрессором и конденсатором с воздушным охлаждением установлен последовательно пластинчатый теплообменник из нержавеющей стали в качестве пароохладителя. При этом полное тепло извлекается из нагнетаемых горячих газов, а обмен скрытой теплоты происходит в конденсаторе с воздушным охлаждением. Блоки эффективно работают из-за сокращенного давления конденсации в результате увеличения размеров конденсатора с воздушным охлаждением.

OPTR – Полная рекуперация теплоты

Параллельно с конденсатором с воздушным охлаждением установлен кожухотрубный теплообменник для полной рекуперации теплоты, полной и скрытой. Температура воды может достигать 50°C.

ВОДЯНОЕ ОХЛАЖДЕНИЕ


OPPR - Частичная рекуперация теплоты

Между компрессором и конденсатором с водяным охлаждением последовательно установлен пластинчатый теплообменник из нержавеющей стали в качестве пароохладителя. При этом полное тепло извлекается из нагнетаемых горячих газов, а обмен скрытой теплоты происходит в конденсаторе с водяным охлаждением. Блоки эффективно работают из-за сокращенного давления конденсации в результате увеличения размеров конденсатора с водяным охлаждением.

Расширительный Частичная рекуперация клапан Компрессор Компрессор 7°C 12°C

OPTR - Полная рекуперация теплоты

Для рекуперации полной и скрытой теплоты установлен один специальный кожухотрубный теплообменник. Он оснащен 2 независимыми водяными контурами с отдельными соединениями для конденсата и рекуперации теплоты. Температура может достигать 55°С.

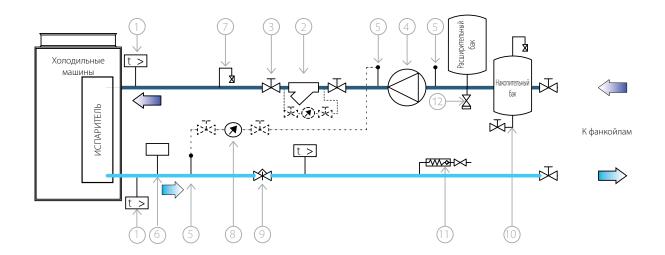
Воздушное охлаждение

Для охлаждения воды чаще используются холодильные машины с воздушным охлаждением. Имея широкий модельный ряд холодильных машин, работающих только в режиме охлаждения или с тепловым насосом, со встроенными компонентами гидравлики или без, компания Daikin всегда может предложить холодильную машину, которая удовлетворит любым Вашим требованиям.

Содержание

EWAQ-ADVP	20	EWAD-TZ новинка	68
EWAQ-ACV3 & EWAQ-ACW1	22	EWAD-C-SS/SL	70
EUWA(N-P-B)-KBZW1	24	EWAD-C-SR	72
EWAQ-BAWN/BAWP	26	EWAD-C-XS/XL	74
EWAQ-DAYN	28	EWAD-C-XR	76
EWAQ-E-XS/XL	30	EWAD-C-PS/PL	78
EWAQ-E-XR	32	EWAD-C-PR	80
EWAQ-F-SS/SL	34		
EWAQ-F-SR	36	EWAD-CZXS/XL	82
EWAQ-F-XS/XL	38	EWAD-CZXR	84
EWAQ-F-XR	40	EWAD-CFXS/XL	86
EWAD-E-SS	42	EWAD-CFXR	88
EWAD-E-SL	44	EWYQ-ADVP	90
EWAD-D-SS	46	EWYQ-ACV3 & EWYQ-ACW1	92
EWAD-D-SL	48	EUWY(N-P-B)-KBZW1	94
EWAD-D-SR	50	EWYQ-BAWN/BAWP	96
EWAD-D-SX	52	EWYQ-DAYN	98
EWAD-D-XS	54	EWYQ-F-XS/XL	100
EWAD-D-XR	56		
EWAD-D-HS	58	EWYQ-F-XR	102
EWAQ-GZXS новинка	60	EWYQ-GZXS новинка	104
EWAQ-GZXR HOBUHKA	62	EWYQ-GZXR HOBUHKA	106
EWAD-BZSS/SL	64	EWYD-BZSS	108
EWAD-BZXS/XL/XR	66	EWYD-BZSL	110

Компания Daikin уделила большое внимание основным элементам холодильной машины и комбинациям хладагента, что позволило получить высокоэффективные модели технически современных и оптимизированных блоков с воздушным и водяным охлаждением, работающие с хладагентами R-410A, R-407C и R-134a.



винтовой

ХОЛОДИЛЬНАЯ МАШИНА С ВОЗДУШНЫМ ОХЛАЖДЕНИЕМ

- 1. Датчик температуры
- 2. Фильтр
- Запорный вентиль
- 4. Hacoc

- 5. Точка замера давления
- 6. Реле протока
- 7. Воздухоотделитель
- 8. Манометр

- 9. Балансировочный вентиль
- 10. Дренажный клапан
- 11. Заправочный вентиль
- 12. Предохранительный клапан

EWAQ-ADVP

ПРЕИМУЩЕСТВА

- > Широкий рабочий диапазон
- > Низкие уровни шума при работе
- > Простая установка
- > Ротационный компрессор Daikin
- > Встроенный гидравлический блок

ОПЦИИ (УСТАНАВЛИВАЕМЫЕ НА ЗАВОДЕ)

> Ленточный нагреватель испарителя

УПРАВЛЕНИЕ

> Регулирование воды на выходе

ВХОДНЫЕ КОНТАКТЫ

- > Сухой контакт
 - BКЛ/ВЫКЛ
 - Таймер:
 - ВКЛ/ВЫКЛ
 - Тихий режим

Цифровой пульт управления

EWAQ-ADVP

Только охлаждение

Модель					EWAQ005ADVP	EWAQ006ADVP	EWAQ007ADVP
Холодопроизводительность	Ном.			кВт	5,2¹	6,0¹	7,11
Потребляемая мощность	Охлаждение	Ном.		кВт	1,89¹	2,35 ¹	2,95¹
EER					2,75¹	2,55¹	2,41 ¹
Размеры	Блок	ВхШхГ		MM		805x1190x360	
Bec	Блок			кг		100	
	Эксплуатационн	ный вес		кг		104	
Водяной	Тип					Пластинчатый	
теплообменник	Ном. расход	Охлажде	ние	л/мин	14,9	17,2	20,4
Воздушный теплообменник	Тип					Трубчатый	
Hacoc	Блок с номинальным ВСД	Охлажде	ние	кПа	49,4	45,1	38,3
Компоненты гидравлической системы	Расширительный бак	Объем		Л		6	
Уровень звуковой мощности	Охлаждение	Ном.		дБА	6.	2	63
Уровень звукового давления	Охлаждение	Ном.		дБА	4	8	50
Компрессор	Тип					Герметичный, ротационный компрессор	
Рабочий	Сторона воды	Охлаждение	Мин.~Макс.	°CDB		5~20	
диапазон	Сторона воздуха	Охлаждение	Мин.~Макс.	°CDB		10~43	
Хладагент	Тип					R-410A	
	Заправка			кг		1,7	
	Управление					Инвертор	
	Контуры	Количест	тво			1	
Подсоединение	Вход / выход вод	дяного тег	плообмен	ника		1"MBSP	
труб	Слив водяного т	геплообме	енника			под пайку 5/16 SAE	
Электропитание	Фаза / Частота /	Напряжен	ние	Гц/В		1~/50/230	

(1) Программа с фанкойлами: охлаждение Ta 35°C - LWE 7°C (Dt: 5°C)

- > Все компоненты оптимизированы для работы с хладагентом R-410A
- > Спиральный компрессор с инверторным управлением
- > Низкие уровни шума при работе
- > Простая установка
- > Широкий рабочий диапазон
- > Встроенный гидравлический блок

ОПЦИИ (УСТАНАВЛИВАЕМЫЕ НА ЗАВОДЕ)

- > Ленточный нагреватель испарителя (EWAQ-ACV3/ACW1)
- > Ленточный нагреватель трубопровода (EWAQ-ACV3)

ДОПОЛНИТЕЛЬНЫЙ КОМПЛЕКТ

Цифровой вход/выход РСВ

УПРАВЛЕНИЕ

> Регулирование воды на выходе

ВХОДНЫЕ КОНТАКТЫ

- > Сухой контакт
 - ВКЛ/ВЫКЛ
 - Таймер:
 - ВКЛ/ВЫКЛ
 - Тихий режим

Цифровой пульт управления

EWAQ009-011ACV3/EWAQ009-013ACW1

Только охлаждение

			· ·										
Модель					EWAQ009ACV3	EWAQ010ACV3	EWAQ011ACV3	EWAQ009ACW1	EWAQ011ACW1	EWAQ013ACW1			
Холодопроизводительность	Ном.			кВт	12,21 / 8,62	13,61 / 9,62	15,7 ¹ / 11,1 ²	12,91 / 9,12	15,71 / 11,12	17,01 / 13,3 ²			
Регулирование производительности	Способ				Син	верторным управле	нием	Син	верторным управле	нием			
Потребляемая мощность	Охлаждение	Ном.		кВт	2,85 ¹ / 2,83 ²	3,41 ¹ / 3,28 ²	4,131 / 3,902	3,081 / 3,052	4,13 ¹ / 3,90 ²	5,521 / 5,18 2			
EER					4,27 ¹ / 3,05 ²	4,00 ¹ / 2,93 ²	3,791 / 2,852	4,19 ¹ / 2,99 ²	3,791 / 2,852	3,08 ¹ / 2,57 ²			
ESEER													
Размеры	Блок	ВхШхГ		MM		1435x1418x382			1435x1418x382				
Bec	Блок			КГ		180		180					
Водяной	Тип					Пластинчатый		Пластинчатый					
теплообменник	Объем воды			л		1,01		1,01					
	Ном. расход	Охлажде	ние	л/мин	24,7	27,6	26,1	31,9	38,2				
Воздушный теплообменник	Тип				H 24,7 27,6 31,9 26,1 31,9 38, Hi-XSS Hi-XSS								
Hacoc	Блок с номинальным ВСД	Охлажде	ние	кПа	58,0 54,6 49,1 56,4 49,1 40								
Компоненты гидравлической системы	Расширительный бак	Объем		Л	58,0 54,6 49,1 56,4 49,1 40 10 10								
Вентилятор	Расход воздуха	Охлаждение	Ном.	м³/мин	96	100	97		-				
Двигатель	Скорость	Охлаждение	Ном.	об/мин		780			780				
вентилятора		Ступени				8			8				
Уровень звуковой мощности	Охлаждение	Ном.		дБА		64		6	54	66			
Уровень звукового	Охлаждение	Ном.		дБА		51		5	51	52			
давления	Ночной тихий режим работы	Охлажде	ние	дБА		45		4	15	46			
Компрессор	Тип				Герметич	нный спиральный кол	ипрессор	Герметич	нный спиральный ког	ипрессор			
Рабочий	Сторона воды	Охлаждение	Мин.~Макс.	°CDB		5~22			5~22				
диапазон	Сторона воздуха	Охлаждение	Мин.~Макс.	°CDB		10~46			10~46				
Хладагент	Тип					R-410A			R-410A				
	Заправка			КГ		2,95			2,95				
	Управление				Электронный расширительный вентиль Электронный расширительный вентиль								
	Контуры	Количест	во			1		1					
Водяной контур	Диаметр соедин	нительных	труб	дюйм		G 5/4" (внутр.)			G 5/4" (внутр.)				
	Трубопровод			дюйм 5/4" 5/4"									
Электропитание	Фаза / Частота /	Напряжен	ние	Гц/В		1~/50/230			3 ~/50/400				

⁽¹⁾ Программа теплых полов: охлаждение Та 35°C - LWE 18°C (Dt. 5°C); обогрев Та DB/WB 7°C/6°C - LWC 35°C (Dt. 5°C) (2) Программа с фанкойлами: охлаждение Та 35°C - LWE 7°C (Dt. 5°C); обогрев Та DB/WB 7°C/6°C - LWC 45°C (Dt. 5°C)

- > Спиральный компрессор Daikin
- Уменьшение времени монтажа благодаря встроенному гидромодулю с циркуляционным насосом и/или баком-аккумулятором
- Возможность установки бака-аккумулятора ёмкостью 200 л
- > Низкие уровни шума при работе
- > Повышенное удобство в обслуживании
- > Главный выключатель
- > Реле протока воды
- > 3 различных варианта компоновки:
 - холодильная машина EUWAN без встроенного гидравлического блока;
 - холодильная машина EUWAP со встроенным гидравлическим блоком (насос, расширительный бак, гидравлические компоненты);
 - холодильная машина EUWAB со встроенным гидравлическим блоком (бак-аккумулятор, насос, расширительный бак, гидравлические компоненты)
- Контроллер SE μC²

ОПЦИИ (УСТАНАВЛИВАЕМЫЕ НА ЗАВОДЕ)

- > Температура охлаждённой воды до 5°С или -10°С.
- Вентиляторы высокого внешнего статического давления (50 Па)

АКСЕССУАРЫ (НАБОР)

- Индикаторы давления хладагента (EKGAU5/8/10/12/16/20/24KA)
- 200л буферный накопитель для моделей EUWAN и EUWAP (ЕКВТ, см. стр. ЕКВТ в этом каталоге)
- > Комплект плавного пуска (EKSS)
- Адресная карта для подсоединения к интерфейсу BMS или интерфейсу удаленного пользователя (EKAC10C)
- Дистанционный интерфейс пользователя (EKRUMCA)

УПРАВЛЕНИЕ

Регулирование температуры воды на входе

ВХОДНЫЕ / ВЫХОДНЫЕ КОНТАКТЫ

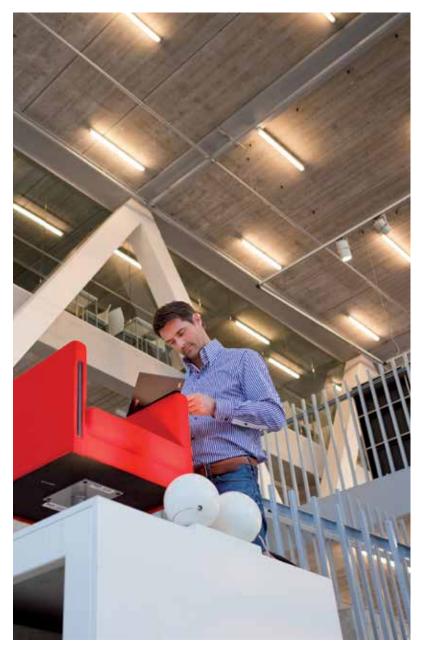
Вход

- > Дистанц. ВКЛ./ВЫКЛ
- > Контакт насоса

Мощность

- > Работа компрессора
- > Отчет об ошибках
- > Включение насоса

КОМПОНЕНТЫ ГИДРАВЛИЧЕСКОГО КОНТУРА



μC² SE

^{*} Для установки EKRUMCA на блок требуется установить EKAC10C.

EUWAN:

- > Спиральный компрессор
- · Главный выключатель
- Реле протока воды
- » Фильтр
- Защитная решётка конденсатора
- Круглогодичная работа

EUWAP = EUWAN +

- Hacoc
- > Расширительный бак
- Регулирующий клапан
- Дренаж
- > Манометр давления воды
- > Клапан сброса давления

EUWAB = EUWAP +

> Буферный бак

Только охлаждение

Модель					N5	P5	B5	N8	Т	P8 B8	N10	P10	B10	N12	P12	B12	N16	P16	B16	N20	P20	B20	N24	P24 B24
Холодопроизводительность	Ном			кВт	11,2		1,7	17,7		18.2	22,3	-	2.9	26,2		5.8	34,4		5,4	46.4		7.5	55,0	56.1
Ступени регулиро				%	,_		.,,	177	-		100		_,,	20,2		,,0	3 ., .		.,.		-50-10		33,0	50,1
Потребляемая мощность		Ном.		кВт	4,56	4	,59	7,44	Т	7.39	8,87	8	.88		11.7		14,90	15	5 1	18,1		8,2	24,1	24,2
EER	ожищение			11.01	2,46		,55	2,38	t	2.46	2,51		.58	2.24		29	2,31		34	2,56		.61	2.28	2,32
Размеры	Блок	BxIIIxF		мм	2,.0	1230x1290x734									x2580		2,50		541x2					
Bec	Блок			КГ	150						245	259	271	248	262	274	430	448	460	490	508	520	496	514 526
	Эксплуатационн	ный вес		КГ	152	171	239	218	2	232 300	248	262	330	251	265	335	436	457	525	496	518	545	503	524 592
Водяной	Тип					Пластинчатый								атый										
теплообменник	Объем воды			л		1,14 1,615 1,9 2,375								2,964			3,9			4,524				
	Ном. расход	Охлажде	ение	л/мин		32 51 64 76									99			134			158			
	Перепад давления	Охлаждение	Теплообменник	кПа		24 38 43							37		22									
Воздушный теплообменник	Тип				Трубный с вафельным оребрением																			
Hacoc	Блок с номинальным ВСД	Охлажде	ение	кПа	-	2	09	-		128	-	13	38	-	10)5	-	2	40	-	1	95	-	158
Компоненты гидравлической системы	Расширительный бак	Объем		Л	-		12	-	Г	12	-	1	2	-	1	2	-	1	2	-		12	-	12
Группа вентиляторов	Расход воздуха	Охлаждение	Ном.	м³/мин	160 (на	2 венти	ілятора)								170 (ı	на 2 ве	нтиля	тора)						
Группа вентиляторов 2	Расход воздуха	Охлаждение	Ном.	м³/мин							-								17	'0 (на 2) (на 2 вентилятора)			
Уровень звуковой мощности	Охлаждение	Ном.		дБА		67				76				78				79				8	1	
Компрессор	Тип											Герм	иетич	ный сп	ираль	ный к	омпре	ссор						
Рабочий	Сторона воды	Охлаждение	Мин.~Макс.	°CDB											-10~25	5								
диапазон	Сторона воздуха	Охлаждение	Мин.~Макс.	°CDB											-15~43	3								
Хладагент	Тип													l	R-4070									
	Управление										T	ермос	татич	еский ј	расши	рител	ьный в	вентил	ТЬ					
	Контуры	Количес	тво		1 2																			
Контур охлаждения	Заправка			КГ								6,0												
71	Заправка			КГ	- 4,6								5,9			6,0								
Подсоединение	Вход/выход вод	Ы								G 1"1/4	,	к.)								2"				
труб	Спуск воды									1-	1/4″										2″			
Электропитание	Фаза / Частота /	Напряже	ние	Гц/В		3N~/50/400																		

- > Высокоэффективная холодильная машина с высоким значением ESEER
- > Минимальный пусковой ток и быстрая окупаемость
- Не требуется бак-аккумулятор для стандартных помещений
- Бескорпусный или с насосом заводской сборки (стандартным/высоким ESP)
- Низкий уровень шума благодаря компрессору с инверторным управлением/вентиляторам
- > EWAQ-BAWN: Бескорпусный
- > EWAQ-BAWP: C насосом

СТАНДАРТНЫЙ КОМПЛЕКТ

 Гидравлический модуль: фильтр, запорные вентили, дренажный клапан, автоматическая продувка воздухом, переключатель потока

ОПЦИИ

- > Низкая температура воды на выходе до -10°C
- > Один центробежный насос (низкий напор)
- > Один центробежный насос (высокий напор)
- > Электрический нагреватель испарителя

АКСЕССУАРЫ

- Манометры (BHGP26A1)
- Плата (РСВ) с дополнительными входами/выходами (ЕКР1АНТА)
- > Наружный адаптер (DTA104A62)
- Дополнительный пульт управления параллельного соединения (EKRUAHTB)
- > Интерфейс Modbus для мониторинга и управления (RTD-W)

BRC21A52

Только охлаждение

Модель					016	021	025	032	040	050	064
Холодопроизводительность	Ном.			кВт	17,4 (1)/16,6(2)	21,7(1)/20,7(2)	25,8(1)/24,7(2)	32,3(1)/30,9(2)	43,4(1)/41,5(2)	51,8(1)/49,7(2)	64,5(1)/62,3(2)
Регулирование	Способ						Синв	ерторным управле	ением		
производительности	Минимальная пр	оизводите.	льность	%				25			
Потребляемая мощность	Охлаждение	Ном.		кВт	5,60(1)/5,80(2)	7,25(1)/7,59(2)	9,29(1)/9,74(2)	13,0(1)/13,5(2)	14,7(1)/15,4(2)	18,8(1)/19,7(2)	26,4(1)/27,4(2)
EER					3,11(1)/2,86(2)	2,99(1)/2,73(2)	2,78(1)/2,54(2)	2,48(1)/2,29(2)	2,95(1)/2,69(2)	2,76(1)/2,52(2)	2,44(1)/2,27(2)
ESEER					4,33(1)/4,21(2)	4,08(1)/4,18(2)	3,85(1)/4,04(2)	3,39(1)/3,62(2)	4,19(1)/4,24(2)	3,96(1)/4,12(2)	3,64(1)/3,78(2)
Размеры	Блок	ВхШхГ		MM		1684x1371x774		1684x1684x774	1684x2	358x780	1684x2980x780
Bec	Блок			кг	264 317 397				5	71	730
	Эксплуатационн	ный вес		кг	267	32	577 738				
Водяной	Тип							Пластинчатый			
теплообменник	Объем воды			л	1,9 2,9 3,8						5,7
	Ном. расход	Охлажден	ние	л/мин	50	62	74	93	124	148	185
	Перепад давления	Охлаждение	Итого	кПа	20	30	42	3	0	42	30
Воздушный теплообменник	Тип							Hi-XSS			
Вентилятор	Расход воздуха	Охлаждение	Ном.	м ³ /мин	171	18	35	233	3:	70	466
Уровень звуковой мощности	Охлаждение	Ном.		дБА		78		80	8	1	83
Компрессор	Тип						Герметичн	ый спиральный ко	мпрессор		
Рабочий	Сторона воды	Охлаждение	Мин.~Макс.	°CDB				5~20			
диапазон	Сторона воздуха	Охлаждение	Мин.~Макс.	°CDB				-5~43			
Хладагент	Тип							R-410A			
	Заправка			кг		7,6		9,6	15	5,2	19,2
	Управление						Электронн	ый расширительні	ый вентиль		
	Контуры	Количест	во					1			
Подсоединение	Вход/выход вод	Ы				1-1/4" (внутр.)			2" (внутр.)	
труб	Спуск воды				ĺ	1-1	/4"			1-1/2"	
Электропитание	Фаза / Частота /	Напряжен	ие	Гц/В				3N~/50/400			

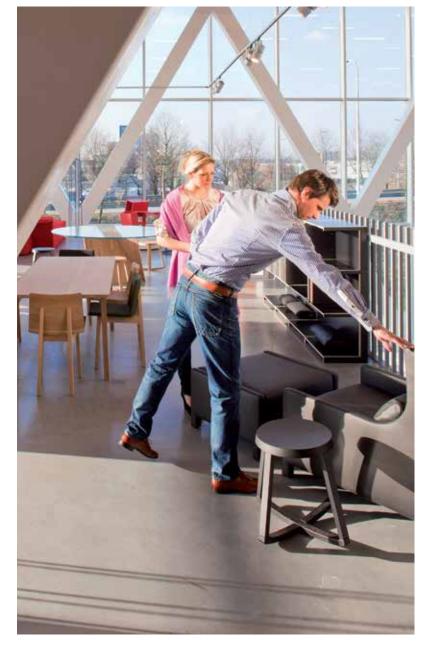
- Все компоненты оптимизированы для работы с хладагентом R-410A
- > Несколько компрессоров в одном контуре
- > Надежный и эффективный с высокими значениями EER
- > Антикоррозионная обработка алюминиевого оребрения
- Низкие уровни шума при работе
- > Простая установка
- Вентиляторы имеют защиту от перегрузки (4 - 8 вентиляторов, в зависимости от размера блока)
- > Предохранительные клапаны в каждом контуре
- > Электронные автоматические выключатели
- > Электронный расширительный вентиль
- Паяный пластинчатый теплообменник с двойными пластинами
- Легкий доступ ко всем компонентам гидравлики с 3 сторон
- > Вынесенный электрический шкаф облегчает доступ
- Доступ к компрессорам и элементам управления с одной стороны блока
- Повышенная надежность благодаря 2 независимым контурам охлаждения (EWAQ130-260DAYN)
- > Двухконтурный теплообменник (от >100 кВт)
- > Разборный фильтр/осушитель
- > Пульт управления Daikin (Pcaso) с удобным интерфейсом

ОПЦИИ (УСТАНАВЛИВАЕМЫЕ НА ЗАВОДЕ)

- > Контакт одного насоса
- > Контакт сдвоенного насоса
- > Один насос
- > Сдвоенный насос (1 корпус насоса, два двигателя)
- > Высоконапорный насос (только один насос)
- > Буферный бак
- Вентиляторы инвертора (нет в наличии с функцией тихой работы)
- > Гликоль 0°С / -10°С
- > Ленточный нагреватель испарителя
- > Дополнительные клапаны
- > Амперметр / вольтметр
- Низкий уровень шума
- > Защитные решётки конденсатора
- > Предохранительный клапан низкого и высокого давления

АКСЕССУАРЫ (НАБОР)

- > Адресная карта (EKACPG)
- > Удаленный пользовательский интерфейс (EKRUPG)
- > Комплект трубопровода (EKGN210 и EKGN260)



PCASO

Холодильные машины EWAQ-DAYN могут быть оснащены системой DICN, которая позволяет выполнять одновременную работу 4 холодильных машин как единой установки, чтобы обеспечить необходимую холодопроизводительность. Это обеспечивает точный и эффективный контроль производительности, а также

резервирование и надёжную работу системы. Эта функция позволяет холодильной машине Daikin работать с одним пультом управления. Обратите внимание, что система DICN доступна только для той же серии модели.

EWAQ130,150DAYN

Только охлаждение

					,							
Модель					080	100	130	150	180	210	240	260
Холодопроизводительность	Ном.			кВт	79,41 / 81,02	104 ¹ / 106 ²	130 ¹ / 133 ²	151 ¹ / 154 ²	181 ¹ / 184 ²	208 ¹ / 211 ²	2341 / 2382	2521 / 2562
Ступени регулиро	вания			%	0-50)-100	0-25-50	-75-100	21/29-43/50/57-71/79-100	0-25-50-75-100	22/28-40/50/56-72/78-100	0-25-50-75-100
Потребляемая мощность	Охлаждение	Ном.		кВт	27,01 / 27,62	36,91 / 37,22	47,41 / 48,12	57,21 / 57,82	65,6 ¹ / 66,5 ²	75,91 / 76,62	84,41 / 84,52	95,81 / 95,82
EER					2,941 / 2,932	2,82 ¹ / 2,85 ²	2,74 ¹ / 2,77 ²	2,64 ¹ / 2,66 ²	2,76 ¹ / 2,77 ²	2,741 / 2,752	2,77 ¹ / 2,82 ²	2,631 / 2,672
ESEER					3,881 / 3,822	3,79 ¹ / 3,83 ²	4,031 / 3,972	3,95 ¹ / 3,96 ²	4,04 ¹ / 4,02 ²	4,00 ¹ / 4,02 ²	3,89 ¹ / 4,00 ²	3,73 ¹ / 3,84 ²
Размеры	Блок	ВхШхГ		мм	2311x20	000x2566	2311x20	00x2631	2311x20	00x3081	2311x20	00x4850
Bec	Блок			кг	1350	1400	1500	1550	1800	1850	3150	3250
	Эксплуатационн	ый вес		кг	1365	1415	1517	1569	1825	1877	3189	3292
Водяной	Тип											
теплообменник	Ном. расход	Охлажде	ние	л/мин	229	301	377	436	522	599	677	728
	Перепад давления	Охлаждение	Итого	кПа	59	58	52	49	52	53	51	47
Воздушный теплообменник	Тип						Tp	/бчатый с вафе.	пьным оребрени	ем		
Вентилятор	Расход воздуха	Ном.		м³/мин	78	80	800	860	12	90	16	00
	Скорость			об/мин	88	80	900		970		90	00
Уровень звуковой мощности	Охлаждение	Ном.		дБА	8	36	88	89	9	0	9	1
Компрессор	Тип							Спиральны	й компрессор			
Рабочий	Сторона воды	Охлаждение	Мин.~Макс.	°CDB				-10)~25			
диапазон	Сторона воздуха	Охлаждение	Мин.~Макс.	°CDB				-15	5~43			
Хладагент	Тип		,					R-4	110A			
	Управление						Элеі	ктронный расш	ирительный вен	гиль		
	Контуры	Количес	гво			1			. 2	!		
Контур охлаждения	Заправка			КГ	3	3	19	23	31	30	40	39
Контур хладагента 2	Заправка			КГ		-	19	23	31	30	40	39
Подсоединение	Вход / выход вод	дяного те	плообмен	іника			3" на	руж.д.			3	"
труб	Слив водяного т	еплообме	енника						'2"G			
Электропитание	Фаза / Частота /			Гц / В								

⁽¹⁾ Для моделей N (стандарт) (2) Для моделей P (с доп. насосом / +OPSP) и для моделей B (с доп. насосом и буферным накопителем / +OPSP +OPBT)

- Надежный и эффективный с высокими значениями EER
- Ряд преимуществ благодаря использованию спиральных компрессоров большой производительности: конкурентоспособность, уменьшенный корпус и вес, больше места вокруг блока
- 1-2 полностью независимых контура охлаждения
- Уменьшенный корпус благодаря раме V-образного вида
- Широкий рабочий диапазон: температура наружного воздуха от 52°C до -18°C

СИСТЕМА СТАНДАРТНОЙ УСТАНОВКИ

- Пускатель для прямого запуска (DOL)
- Двойная уставка
- Соединение VICTAULIC для испарителя
- Изоляция испарителя 20мм
- Электрический нагреватель испарителя
- Реле протока испарителя
- Электронный расширительный вентиль
- Датчик температуры атмосферного воздуха и сброс заданного значения
- Счетчик рабочего времени
- Контактор для общей неисправности
- Блокировка главного выключателя
- Водяной фильтр

ОПЦИИ (УСТАНАВЛИВАЕМЫЕ НА ЗАВОДЕ)

- Частичная рекуперация теплоты
- Рассольная версия
- Осевые вентиляторы с напором 250 Па (EWAQ-E-XS)
- Защита теплообменника конденсатора
- Защита поверхности испарителя
- Трубки конденсатора Си-си
- Трубки конденсатора Cu-cu-Sn
- Антикоррозийное покрытие теплообменника
- Запорный вентиль нагнетательной линии
- Запорный вентиль всасывающей линии
- Манометры стороны высокого давления
- Манометры стороны низкого давления
- Один центробежный насос (низкий напор) Один центробежный насос (высокий напор)
- Два центробежных насоса (низкий напор)
- Два центробежных насоса (высокий напор)
- Предохранительный клапан на 2 значения давления с отводом
- Реле тепловой защиты компрессора
- Контроль фаз
- Контроль минимального/максимального напряжения
- Электросчетчик
- Конденсаторы для компенсации коэффициента мощности
- Speedtrol (устройство управления скоростью вентилятора - вкл/выкл - до -18°C)
- Сброс уставки, ограничение нагрузки и аварийный сигнал на внешнем устройстве
- Автоматические выключатели компрессора
- Автоматические выключатели вентиляторов
- Регулирование скорости вентилятора (+тихая работа вентилятора)
- Реле заземления
- Резиновая антивибрационная опора
- Пружинная антивибрационная опора
- Наружный бак без корпуса (500 или 1000л)
- Наружный бак с корпусом (500 или 1000л)
- Комплект для транспортировки (контейнер)
- Комплект для перевозки
- Обработка теплообменника Blygold
- Защитные панели теплообменника конденсатора

MicroTech III

EWAQ-E-

Только охлаждение Стандартный/низ

Максимальная эффективность Стандартный/низкий уровень шума

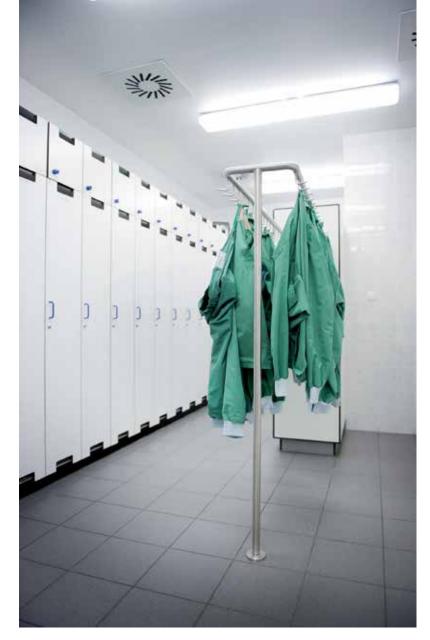
					100				
Модель				180	200	230	260	320	340
Холодопроизводительность	Ном.		кВт	178	200	226	263	315	334
Регулирование	Способ					Ступе	енчатое		
производительности	Минимальная пр	оизводительность	%	50	43	50	33	27	33
Потребляемая мощность	Охлаждение	Ном.	кВт	58,0	65,3	73,8	86,2	103	110
EER					3,06			3,05	
ESEER				3,99	4,06	3,87	4	,09	4,04
Размеры	Блок	ВхШхГ	MM	2271x12	24x4413	2271x1	224x5313	2271x12	224x6213
Bec (XS)	Блок		КГ	1722	1807	1871	2173	2304	2492
	Эксплуатационн	ный вес	КГ	1734	1819	1885	2188	2318	2507
Bec (XL)	Блок		КГ	1876	1965	2032	2370	2507	2705
	Эксплуатационн	ный вес	КГ	1889	1978	2047	2385	2522	2719
Водяной	Тип					Пластинчатый	теплообменник		
теплообменник	Объем воды		Л	1	2		•	14	
	Ном. расход	Охлаждение	л/сек	8,5	9,6	10,8	12,6	15,1	16,0
	Перепад давления	Охлаждение Итого	кПа	27	34	35	4	17	54
Воздушный теплообменник	Тип				Ope	бренный с интегриро	ованным переохлади	телем	
Вентилятор	Расход воздуха	Ном.	л/сек	21 845	21 148	26 874	25 884	32 953	32 065
	Скорость		об/мин			g	000		
Уровень звуковой мощности (XS)	Охлаждение	Ном.	дБА	93	94	96	95	96	97
Уровень звуковой мощности (XL)	Охлаждение	Ном.	дБА	91	92	93	92	93	94
Уровень звукового давления (XS)	Охлаждение	Ном.	дБА	75		76		7	77
Уровень звукового давления (XL)	Охлаждение	Ном.	дБА		7	'3		7	74
Компрессор	Тип					Спиральны	й компрессор		
Рабочий	Сторона воды	Охлаждение Мин.~Макс	°CDB			-15	5~18		
диапазон	Сторона воздуха	Охлаждение Мин.~Макс	°CDB			-18	3~52		
Хладагент	Тип					R-4	110A		
	Контуры	Количество					1		
Контур охлаждения	Заправка		кг	15	18	16		21	26
Подсоединение труб	Вход/выход вод	ы из испарителя (н	аруж.д.)				3"		
Электропитание	Фаза / Частота /	Напряжение	Гц/В			3~/5	50/400		

- > Надежный и эффективный с высокими значениями EER
- Ряд преимуществ благодаря использованию спиральных компрессоров большой производительности: конкурентоспособность, уменьшенный корпус и вес, больше места вокруг блока
- > 1-2 полностью независимых контура охлаждения
- Уменьшенный корпус благодаря раме V-образного вида
- > Широкий рабочий диапазон: температура наружного воздуха от 52°С до -18°С

СИСТЕМА СТАНДАРТНОЙ УСТАНОВКИ

- > Пускатель для прямого запуска (DOL)
- > Двойная уставка
- > Coeдинение VICTAULIC для испарителя
- > Изоляция испарителя 20мм
- > Электрический нагреватель испарителя
- > Реле протока испарителя
- > Электронный расширительный вентиль
- Датчик температуры атмосферного воздуха и сброс заданного значения
- > Счетчик рабочего времени
- Контактор для общей неисправности
- > Блокировка главного выключателя
- > Водяной фильтр

ОПЦИИ (УСТАНАВЛИВАЕМЫЕ НА ЗАВОДЕ)


- Уастичная рекуперация теплоты
- > Рассольная версия
- > Защита теплообменника конденсатора
- > Защита поверхности испарителя
- > Трубки конденсатора Си-си
- > Трубки конденсатора Cu-cu-Sn
- > Антикоррозийное покрытие теплообменника
- > Запорный вентиль нагнетательной линии
- > Запорный вентиль всасывающей линии
- > Манометры стороны высокого давления
- > Манометры стороны низкого давления
- > Один центробежный насос (низкий напор)
- > Один центробежный насос (высокий напор)
- > Два центробежных насоса (низкий напор)
- > Два центробежных насоса (высокий напор)
- Предохранительный клапан на 2 значения давления с отводом
- > Реле тепловой защиты компрессора
- > Контроль фаз
- > Контроль минимального/максимального напряжения
- > Электросчетчик
- > Конденсаторы для компенсации коэффициента мощности
- Speedtrol (устройство управления скоростью вентилятора - вкл/выкл - до -18°С)
- Сброс уставки, ограничение нагрузки и аварийный сигнал на внешнем устройстве
- > Автоматические выключатели компрессора
- > Автоматические выключатели вентиляторов
- Регулирование скорости вентилятора (+тихая работа вентилятора)
- > Реле заземления
- > Резиновая антивибрационная опора
- > Пружинная антивибрационная опора
- > Наружный бак без корпуса (500 или 1000л)
- > Наружный бак с корпусом (500 или 1000л)
- > Комплект для транспортировки (контейнер)
- > Комплект для перевозки
- > Обработка теплообменника Blygold
- > Защитные панели для теплообменника конденсатора

MicroTech III

EWAQ-E-

Только охлаждение Пониженный уровень шума

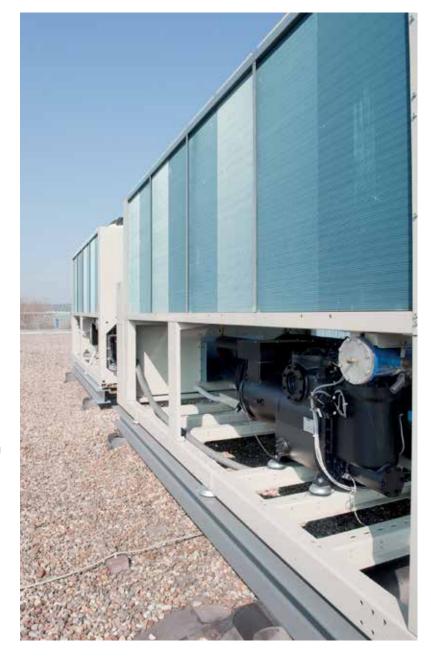
Модель 170 190 220 260 300 320 Холодопроизводительность Ном. 172 193 219 254 302 321 Регулирование Способ Ступенчатое производительности Минимальная производительность 50 50 43 33 27 33 Потребляемая мощность Охлаждение Ном. кВт 56.5 64.4 71,8 85.4 102 109 EER 3,05 3,00 3,05 2,97 2,96 2,95 ESFER 4,41 4,48 4,27 4,54 4,52 4,43 2271x1224x4413 Размеры ВхШхГ 2271x1224x5313 2271x1224x6213 Bec Блок ΚГ 2064 2632 2840 2148 2647 Эксплуатационный вес 1982 2076 2855 ΚГ Водяной Пластинчатый теплообменник Тип теплообменник Объем воды 14 Ном. расход Охлаждение л/сек 15,4 8,2 9,2 10,5 12,1 14,5 кПа Перепад давления Охлаждение Итого 32 33 44 26 43 50 Воздушный теплообменник Тип Оребренный с интегрированным переохладителем 16 743 16 285 25 243 24 604 Вентилятор Расход воздуха Ном. л/сек 20 618 20 056 Скорость об/мин 705 89 Уровень звуковой мощности Охлаждение дБА 85 86 88 Уровень звукового давления Охлаждение Ном. 66 68 69 Компрессор Тип Спиральный компрессор Рабочий Сторона воды Охлаждение Мин.~Макс. °CDB диапазон Сторона воздуха Охлаждение Мин.~Макс. °CDB -18~52 Хладагент R-410A Тип Контуры Количество Контур охлаждения Заправка 15 21 26 кг 18 16 Подсоединение труб Вход/выход воды из испарителя (наруж.д.) 3~/50/400 Электропитание Фаза / Частота / Напряжение Гц/В

- › Надежный и эффективный с высокими значениями EER
- Ряд преимуществ благодаря использованию высокопроизводительных спиральных компрессоров: конкурентоспособность, уменьшенный корпус и вес, больше места для обслуживания блока
- > 1-2 полностью независимых контура охлаждения
- > Широкий рабочий диапазон: температура наружного воздуха от 52°С до -18°С
- Идеальное решение для производственных участков и зон повышенного комфорта

СИСТЕМА СТАНДАРТНОЙ УСТАНОВКИ

- > Пускатель для прямого запуска (DOL)
- > Двойная уставка
- > Coeдинение VICTAULIC для испарителя
- > Изоляция испарителя 20мм
- > Электрический нагреватель испарителя
- Реле протока испарителя
- > Электронный расширительный вентиль
- Датчик температуры атмосферного воздуха и сброс заданного значения
- > Счетчик рабочего времени
- > Контактор для общей неисправности
- > Блокировка главного выключателя
- > Водяной фильтр

ОПЦИИ (УСТАНАВЛИВАЕМЫЕ НА ЗАВОДЕ)


- > Полная рекуперация теплоты
- Частичная рекуперация теплоты
- > Рассольная версия
- > Осевые вентиляторы с напором 250 Па (EWAQ-F-SS)
- > Защита для теплообменника конденсатора
- > Защита поверхности испарителя
- Трубки конденсатора Cu-cu
- > Трубки конденсатора Cu-cu-Sn
- > Антикоррозийное покрытие теплообменника
- Запорный вентиль нагнетательной линии
- Запорный вентиль всасывающей линии
- > Манометры стороны высокого давления
- > Манометры стороны низкого давления
- > Один центробежный насос (низкий напор)
- > Один центробежный насос (высокий напор)
- > Два центробежных насоса (низкий напор)
- > Два центробежных насоса (высокий напор)
- Предохранительный клапан на 2 значения давления с отводом
- > Плавный старт
- > Реле тепловой защиты компрессора
- > Контроль фаз
- > Контроль минимального/максимального напряжения
- > Электросчетчик
- > Конденсаторы для компенсации коэффициента мощности
- Speedtrol (устройство управления скоростью вентилятора - вкл/выкл - до -18°С)
- Сброс уставки, ограничение нагрузки и аварийный сигнал на внешнем устройстве
- Автоматические выключатели компрессора
- > Автоматические выключатели вентиляторов
- Регулирование скорости вентилятора (+тихая работа вентилятора)
- Реле заземления
- > Резиновая антивибрационная опора
- > Пружинная антивибрационная опора
- > Наружный бак без корпуса (500 или 1000л)
- Наружный бак с корпусом (500 или 1000л)
- Комплект для транспортировки (контейнер)
- > Комплект для перевозки
- > Обработка теплообменника Blygold
- э Защитные панели для теплообменника конденсатора

MicroTech III

EWAQ210-400F-SS/SL

EWAQ360-610F-SS/SL

Только охлаждение Стандартный/низкий уровень шума

Модель				210	230	250	280	320	350	360	400	410	480	550	610
Холодопроизводительность	Ном.		кВт	206	224	247	283	313	35	59	40	07	480	551	609
Регулирование	Способ								Ступен	чатое					
производительности	Минимальная пр	оизводительность	%	25	22	25	23	25	2	1	2	.5	17	14	17
Потребляемая мощность	Охлаждение	Ном.	кВт	73,3	84,9 93,6		109	122	14	11	15	54	187	207	229
EER				2,81	81 2,64		2,60	2,58	2,55		2,	64	2,57	2,67	2,66
ESEER				3,75	3,72	3,74	3,66	3,67	3,74	4,00	3,78 4,01		4,10	4,00	3,99
Размеры	Блок	ВхШхГ	мм	2271x1224x44		413	2271x12	24x5313	2271x1224x6213	2221x2258x3210	2447x1224x6213	2397x2258x3210	2221x2258x4110	2221x22	258x5010
D (CC)	Блок		кг	20)58	2130	2202	2284	2409	2509	2659	2759	2990	3336	3558
Bec (SS)	Эксплуатационн	ный вес	кг	20	70	2142	2216	2298	2424	2524	2699	2799	3036	3382	3604
D (CL)	Блок		кг	22	297	2373	2449	2535	2666	2766	2968	3068	3315	3679	3912
Bec (SL)	Эксплуатационн	ный вес	кг	2309 2385 2463 2549 2681 2781 3008 3108							3362	3725	3958		
	Тип							Пла	стинчатый 1	геплообме	нник				
Водяной	Объем воды		л	12					14		4	-0		46	
теплообменник	Ном. расход	Охлаждение	л/сек	9,9	10,7	11,8	13,6	15,0	17	',2	19	9,5	23,0	26,4	29,2
	Перепад давления	Охлаждение Итого	кПа	37	43	53	56	69	3	0	3	2	35	46	56
Воздушный теплообменник	Тип				Оребренный с интегрированным переохладителем										
D	Расход воздуха	Ном.	л/сек	21	21 845 21 148 27 306 26 435 32 767 32 513				513	43 690	54 612	52 870			
Вентилятор	Скорость		об/мин						90	00					
Уровень звуковой мощности (SS)	Охлаждение	Ном.	дБА	93	94		95				97			9	9
Уровень звуковой мощности (SL)	Охлаждение	Ном.	дБА	91	9	92	9	13		9	4		95	9	96
Уровень звукового давления (SS)	Охлаждение	Ном.	дБА	7	75		76		77		7	'8		7	'9
Уровень звукового давления (SL)	Охлаждение	Ном.	дБА			73			74	75	74	7	'5	7	'6
Компрессор	Тип							C	пиральный	компресс	ор				
Рабочий	Сторона воды	Охлаждение Мин.~Макс.	°CDB						-15	~18					
диапазон	Сторона воздуха	Охлаждение Мин.~Макс.	°CDB						-18	~52					
V	Тип			R-410A											
Хладагент	Контуры	Количество		2											
Контур охлаждения	Заправка		кг			18		21		2	4		34	40	46
Подсоединение труб	Вход/выход вод	ы из испарителя (н	аруж.д.)						3	"					
Электропитание	Фаза / Частота /	Напряжение	Гц/В						3~/50	0/400					
•															

- Надежный и эффективный с высокими значениями EER
- Ряд преимуществ благодаря использованию спиральных компрессоров большой производительности: конкурентоспособность, уменьшенный корпус и вес, больше места для обслуживания блока
- 1-2 полностью независимых контура охлаждения
- Идеальное решение для производственных участков и зон повышенного комфорта
- Блок может быть оснащен встроенным гидравлическим модулем, в состав которого входят основные гидравлические компоненты. Он оптимизирует время на установку гидравлической и электрической систем, позволяет сэкономить время и деньги
- Контроллер Microtech III с усовершенствованными алгоритмами управления и удобным интерфейсом пользователя

- Пускатель для прямого запуска (DOL)
- Двойная уставка
- Соединение VICTAULIC для испарителя
- Изоляция испарителя 20мм
- Электрический нагреватель испарителя
- Реле протока испарителя
- Электронный расширительный вентиль
- Датчик температуры атмосферного воздуха и сброс заданного значения
- Счетчик рабочего времени
- Контактор для общей неисправности
- Блокировка главного выключателя
- Водяной фильтр

ОПЦИИ (УСТАНАВЛИВАЕМЫЕ НА ЗАВОДЕ)

- Частичная рекуперация теплоты
- Рассольная версия
- Защита для теплообменника конденсатора
- Защита поверхности испарителя
- Трубки конденсатора Cu-cu
- Трубки конденсатора Cu-cu-Sn
- Антикоррозийное покрытие теплообменника
- Запорный вентиль нагнетательной линии
- Запорный вентиль всасывающей линии
- Манометры стороны высокого давления
- Манометры стороны низкого давления
- Один центробежный насос (низкий напор) Один центробежный насос (высокий напор)
- Два центробежных насоса (низкий напор)
- Два центробежных насоса (высокий напор)
- Предохранительный клапан на 2 значения давления с отводом
- Плавный старт
- Реле тепловой защиты компрессора
- Контроль фаз
- Контроль минимального/максимального напряжения
- Электросчетчик
- Конденсаторы для компенсации коэффициента мощности
- Speedtrol (устройство управления скоростью вентилятора - вкл/выкл - до -18°C)
- Сброс уставки, ограничение нагрузки и аварийный сигнал на внешнем устройстве
- Автоматические выключатели компрессора
- Автоматические выключатели вентиляторов
- Регулирование скорости вентилятора (+тихая работа вентилятора)
- Реле заземления
- Резиновая антивибрационная опора
- Пружинная антивибрационная опора
- Наружный бак без корпуса (500 или 1000л)
- Наружный бак с корпусом (500 или 1000л)
- Комплект для транспортировки (контейнер)
- Комплект для перевозки
- Обработка теплообменника Blygold
- Защитные панели теплообменника конденсатора

MicroTech III

EWAQ200-370F-SR

EWAQ340-580F-SR

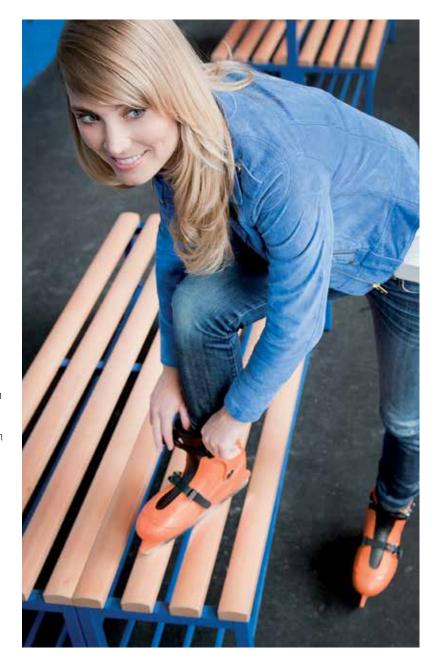
Только охлаждение

Стандартная эффективность Пониженный уровень шума

Модель					200	220	240	270	300	330	340	370	380	460	530	580
Холодопроизводительность	Ном.			кВт	198	214	235	270	298	34	11	3	83	456	527	580
Регулирование	Способ									Ступен	нчатое					
производительности	Минимальная пр	оизводите	льность	%	25	22	25	23	25	2	1	2	.5	17	14	17
Потребляемая мощность	Охлаждение	Ном.		кВт	73,4	86,0	95,6	110	125	14	14	1.	59	191	208	233
EER					2,70	2,49	2,46	2,45	2,38	2,:	37	2,	41	2,39	2,53	2,49
ESEER					4,20	4,12	4,04	4,06	3,95	4,09	4,25	4,02	4,15	4,49	4,42	4,33
Размеры	Блок	ВхШхГ		мм	22	71x1224x4	413	2271x12	24x5313	2271x1224x6213	2221x2258x3210	2447x1224x6213	2397x2258x3210	2221x2258x4110	2221x22	58x5010
	Блок	,		кг	24	12	2491	2571	2661	2799	2899	3116	3216	3481	3863	4108
Bec	Эксплуатационн	ный вес		кг	24	24	2504	2585	2676	2814	2914	3156	3256	3527	3909	4154
	Тип								Плас	тинчатый т	геплообме	нник				
Водяной	Объем воды			л		12			1	4		4	-0		46	
теплообменник	Ном. расход	Охлажде	ние	л/сек	9,5	10,2	11,3	13,0	14,3	16	5,3	18	3,3	21,8	25,2	27,8
	Перепад давления	Охлаждение	Итого	кПа	34	40	48	51	63	2	7	2	.9	31	42	51
Воздушный теплообменник	Тип							Ope	ренный с	интегриро	ванным пе	реохлади	гелем			
	Расход воздуха	Ном.		л/сек	16	743	16 285	20 929	20 356	25	115	24	922	33 487	41 858	40 713
Вентилятор	Скорость			об/мин						70)5					
Уровень звуковой мощности	Охлаждение	Ном.		дБА	85	86		87		8	9	ç	10	89	91	92
Уровень звукового давления	Охлаждение	Ном.		дБА	66	67		68		69	7	0	71	70	71	72
Компрессор	Тип								Cı	пиральный	компресс	ор				
Рабочий	Сторона воды	Охлаждение	Мин.~Макс.	°CDB						-15	~18					
диапазон	Сторона воздуха	Охлаждение	Мин.~Макс.	°CDB						-18	~52					
v	Тип									R-4	10A					
Хладагент	Контуры	Количест	во							- 2	2					
Контур охлаждения	Заправка			кг		1	8		21		2	4		34	40	46
Подсоединение труб		ы из испај	оителя (на	аруж.д.)						3	"					
Электропитание	Фаза / Частота /	Напряжен	ние	Гц/В						3~/50	0/400					

- Надежный и эффективный с высокими значениями EER
- Ряд преимуществ благодаря использованию спиральных компрессоров большой производительности: конкурентоспособность, уменьшенный корпус и вес, больше места вокруг блока
- 1-2 полностью независимых контура охлаждения
- Широкий рабочий диапазон: температура наружного воздуха от 52°C до -18°C
- Идеальное решение для производственных участков и зон повышенного комфорта

- Пускатель для прямого запуска (DOL)
- Двойная уставка
- Соединение VICTAULIC для испарителя
- Изоляция испарителя 20мм
- Электрический нагреватель испарителя
- Реле протока испарителя
- Электронный расширительный вентиль
- Датчик температуры атмосферного воздуха и сброс заданного значения
- Счетчик рабочего времени
- Контактор для общей неисправности
- Блокировка главного выключателя
- Водяной фильтр


- Частичная рекуперация теплоты
- Рассольная версия
- Защита для теплообменника конденсатора
- Защита поверхности испарителя
- Трубки конденсатора Си-си
- Трубки конденсатора Cu-cu-Sn
- Система стандартной установки
- Запорный вентиль нагнетательной линии
- Запорный вентиль всасывающей линии Манометры стороны высокого давления
- Манометры стороны низкого давления
- Один центробежный насос (низкий напор)
- Один центробежный насос (высокий напор)
- Два центробежных насоса (низкий напор)
- Два центробежных насоса (высокий напор)
- Предохранительный клапан на 2 значения давления с отводом
- Реле тепловой защиты компрессора
- Контроль фаз
- Контроль минимального/максимального напряжения
- Электросчетчик
- Конденсаторы для компенсации коэффициента мощности
- Speedtrol (устройство управления скоростью вентилятора - вкл/выкл - до -10°C)
- Сброс уставки, ограничение нагрузки и аварийный сигнал на внешнем устройстве
- Автоматические выключатели компрессора
- Автоматические выключатели вентиляторов
- Регулирование скорости вентилятора (инверторное управление)
- Реле заземления
- Резиновая антивибрационная опора
- Пружинная антивибрационная опора
- Наружный бак без корпуса (500 или 1000л)
- Наружный бак с корпусом (500 или 1000л)
- Комплект для транспортировки (контейнер)
- Комплект для перевозки
- Комплект Nordic
- Обработка теплообменника Blygold
- Защитные панели для теплообменника конденсатора

MicroTech III

EWAQ170-350F-XS/XL

EWAQ320-680F-XS/XL

Максимальная эффективность Стандартный/низкий уровень шума

Только охлаждение Модель 310 320 350 400 430 450 520 Холодопроизводительность Ном кВт 170 194 220 244 316 356 403 428 457 528 607 672 Способ Ступенчатое производительности Минимальная производительность 25 22 20 25 Потребляемая мощность Охлаждение 130 54,8 62,2 70,6 78,3 137 146 170 198 219 EER 3,11 3,13 3,10 3,10 3,12 3,09 3,12 3,07 ESEER 3,89 4,08 3,91 4,03 4,05 4,30 4,06 4,33 4,29 4,14 4,22 4,26 4,22 2271x1224x4413 2271x1224x5313 2271x1224x6213 2221x2258x3210 2271x1224x6213 2221x2258x4110 2221x2258x5010 Блок ВхШхГ 2221x2258x3210 2221x2258x5910 Размеры мм Bec (XS) Блок кг 1688 1958 2210 2339 2500 2600 2632 2732 2744 2845 2861 3569 3667 4054 Эксплуатационный вес кг 1700 1973 2225 2353 2514 2672 2772 2784 2891 2907 3615 3727 4115 Bec (XL) Блок кг 1909 2193 2457 2592 2761 2861 2900 3000 3017 3124 3141 3923 4026 4434 Эксплуатационный вес 1921 2207 2472 2607 2876 2940 3040 3057 3170 3187 3970 4087 4494 Водяной Тип Пластинчатый теплообы теплообменник Объем воды 12 14 46 Ном. расход Охлаждение л/сек 10,5 11,7 21,8 25,3 8,2 кПа 27 22 31 29 41 44 Перепад давления Охлаждение Итого Воздушный теплообменник Тип Оребренный с интегрированным переохладителем Вентилятор Расход воздуха Ном. л/сек 21 845 21 148 26 874 25 204 31 722 30 245 об/мин Скорость 91 96 Уровень звуковой мощности (ХS) Охлаждение Ном. дБА 97 99 100 дБА Уровень звуковой мошности (XL) Охлаждение 90 Ном 91 92 93 95 96 97 72 Уровень звукового давления (XS) Охлаждение Ном. дБА 74 75 79 78 79 Уровень звукового давления (ХL) Охлаждение Ном. дБА 71 73 74 76 Компрессор Тип Спиральный компрессор Рабочий Сторона воды Охлаждение Мин.~Макс. °CDB -15~18 диапазон Сторона воздуха Охлаждение Мин.~Макс. °CDB -18~52 Хладагент R-410A Контуры Количество 2 Контур охлаждения Заправка Подсоединение труб Вход/выход воды из испарителя (наруж.д.) 3~/50/400 Электропитание Фаза / Частота / Напряжение Гц/В

- Надежный и эффективный с высокими значениями EER
- Ряд преимуществ благодаря использованию спиральных компрессоров большой производительности: конкурентоспособность, уменьшенный корпус и вес, больше места вокруг блока
- > 1-2 полностью независимых контура охлаждения
- > Широкий рабочий диапазон: температура наружного воздуха от 52°С до -18°С
- Идеальное решение для производственных участков и зон повышенного комфорта

СИСТЕМА СТАНДАРТНОЙ УСТАНОВКИ

- › Пускатель для прямого запуска (DOL)
- > Двойная уставка
- > Coeдинение VICTAULIC для испарителя
- > Изоляция испарителя 20мм
- > Электрический нагреватель испарителя
- > Антикоррозийное покрытие теплообменника
- > Реле протока испарителя
- > Электронный расширительный вентиль
- Датчик температуры атмосферного воздуха и сброс заданного значения
- Регулирование скорости вентилятора (инверторное управление)
- > Счетчик рабочего времени
- > Контактор для общей неисправности
- > Блокировка главного выключателя
- > Водяной фильтр

- Частичная рекуперация теплоты
- > Рассольная версия
- > Защита теплообменника конденсатора
- > Защита поверхности испарителя
- > Трубки конденсатора Сu-cu
- > Трубки конденсатора Cu-cu-Sn
- > Запорный вентиль нагнетательной линии
- > Запорный вентиль всасывающей линии
- > Манометры стороны высокого давления
- > Манометры стороны низкого давления
- > Один центробежный насос (низкий напор)
- Один центробежный насос (высокий напор)
- > Два центробежных насоса (низкий напор)
- Два центробежных насоса (высокий напор)
- Предохранительный клапан на 2 значения давления с отводом
- > Реле тепловой защиты компрессора
- > Контроль фаз
- > Контроль минимального/максимального напряжения
- > Электросчетчик
- > Конденсаторы для компенсации коэффициента мощности
- > Speedtrol (устройство управления скоростью вентилятора - вкл/выкл - до -10°С)
- Сброс уставки, ограничение нагрузки и аварийный сигнал на внешнем устройстве
- > Автоматические выключатели компрессора
- > Автоматические выключатели вентиляторов
- > Реле заземления
- > Резиновая антивибрационная опора
- Пружинная антивибрационная опора
- > Наружный бак без корпуса (500 или 1000л)
- > Наружный бак с корпусом (500 или 1000л)
- > Комплект для транспортировки (контейнер)
- > Комплект для перевозки
- > Koмплект Nordic
- > Обработка теплообменника Blygold
- > Защитные панели для теплообменника конденсатора

MicroTech III

EWAQ170-330F-XR

EWAQ310-650F-XR

Максимальная эффективность пониженный уровень шума

Тольк	о охл	ажде	ние	9			П	ОН	ИЖ	ен	НЫ	йу	po	ве	НЬ	шу	ма
Модель				170	190	210	240	300	310	330	340	390	410	430	500	580	650
Холодопроизводительность	Ном.		кВт	165	188	211	236	30)4	34	10	385	407	433	502	579	645
Регулирование	Способ									Ступе	чатое						
производительности	Минимальная пр	ооизводительность	%	25	21	25	22	2	3	2	5	21	20	25	17	14	17
Потребляемая мощность	Охлаждение	Ном.	кВт	53,0	61,2	68,7	77,3	10)1	11	17	128	136	146	170	200	219
EER				3,12	3,07	3,08	3,05	3,0	00	2,	92	3,01	2,99	2,	96	2,90	2,95
ESEER				4,49	4,59	4,45	4,51	4,53	4,67	4,45	4,62	4,65	4,62	4,53	4,75	4,63	4,54
Размеры	Блок	ВхШхГ	мм	2271x12	24x4413	2271x12	24x5313	2271x1224x6213	2221x2258x3210	2271x1224x6213	2221x2258x3210	222	1x2258x4	110	2221x22	258x5010	2221x2258x5910
Bec	Блок		кг	2004	2303	2580	2722	2900	3000	3045	3145	3168	3280	3298	4120	4228	4655
	Эксплуатационн	ный вес	кг	2017	2317	2594	2736	2914	3014	3085	3185	3208	3326	3344	4166	4288	4716
Водяной	Тип								Пласт	инчатый :	геплообм	енник					
теплообменник	Объем воды		л	12			14				40			46		(50
	Ном. расход	Охлаждение	л/сек	7,9	9,0	10,1	11,3	14	1,5	16	5,3	18,4	19,5	20,7	24,0	27,7	30,9
	Перепад давления	Охлаждение Итого	кПа	24	25	31	39		2	21		28	26	27	38	40	51
Воздушный теплообменник	Тип							Оребре	нный с и	нтегриро	ванным п	ереохлад	дителем				
Вентилятор	Расход воздуха	Ном.	л/сек	16 743	16 285	20 618	19 522	24	428	23	426	32 570	31	235	39	044	46 852
	Скорость		об/мин							70	05						
Уровень звуковой мощности	Охлаждение	Ном.	дБА	83	84	85	86		8	37		8	9	90	89	90	92
Уровень звукового давления	Охлаждение	Ном.	дБА	64	65	66	6	57	68	67	68	69	7	0	69	70	71
Компрессор	Тип								Спи	1ральный	компрес	сор					
Рабочий	Сторона воды	Охлаждение Мин.~Макс.	°CDB							-15	~18						
диапазон	Сторона воздуха	Охлаждение Мин.~Макс.	°CDB							-18	~52						
Хладагент	Тип									R-4	10A						
	Контуры	Количество									2						
Контур охлаждения	Заправка		кг	14	1	8	21		2	24			35		4	10	46
Подсоединение труб	Вход/выход вод	ы из испарителя (н	аруж.д.)							3	3"						
Электропитание	Фаза / Частота /	Напряжение	Гц/В							3~/50	0/400						

- > Один контур хладагента с одновинтовым компрессором
- Компактная конструкция с пластинчатым теплообменником
- Широкий рабочий диапазон (температура наружного воздуха до -18°C)
- Температура хладоносителя до -15°C
- > Контроллер MicroTech III для эффективного управления и простого соединения с интерфейсами LonWorks, Bacnet, Ethernet TCP/IP или Modbus

- > Стартер Звезда-Треугольник (y d)
- > Двойная уставка
- > Размыкатели цепи вентиляторов с термореле
- > Контроль фаз
- > Электрический нагреватель испарителя
- > Электронно-расширительный вентиль
- > Запорный вентиль на нагнетании
- > Запорный вентиль на всасывании
- > Манометры стороны низкого давления
- Датчик температуры атмосферного воздуха и сброс заданного значения
- > Счетчик рабочего времени
- > Контактор для общей неисправности
- Сброс уставки, ограничение нагрузки и аварийный сигнал на внешнем устройстве
- > Автоматические выключатели вентиляторов
- > Блокировка главного выключателя

- > Полная рекуперация теплоты
- > Частичная рекуперация теплоты
- > Плавный старт
- > Рассольная версия
- > Реле тепловой защиты компрессора
- Регулирование минимального/максимального напряжения
- Электросчетчик
- > Конденсаторы для компенсации коэффициента мощности
- > Ограничение тока
- > Изоляция испарителя 20мм
- > Контроль скорости
- > Защита теплообменника конденсатора
- Трубки конденсатора Си-си
- > Трубки конденсатора Cu-cu sn
- Антикоррозийное покрытие теплообменника
- Реле протока испарителя
- > Манометры стороны высокого давления
- Комплект для транспортировки (контейнер)
- > Резиновая антивибрационная опора
- > Пружинная антивибрационная опора
- > Один центробежный насос (низкий и высокий напор)
- Два центробежных насоса (низкого или высокого напора) - Нет для размеров 100 и 120)
- Предохранительный клапан на 2 значения давления с отводом
- > Автоматические выключатели компрессора
- > Наружный бак с корпусом или без (500 и 1000л)
- Регулирование скорости вентилятора (+тихая работа вентилятора)
- > Комплект для перевозки
- > Обработка теплообменника Blygold
- > Защитные панели для теплообменника конденсатора

MicroTech III

EWAD100-210E-SS

Только охлаждение

Стандартная эффективность Стандартный уровень шума

Модель				100	120	140	160	180	210	260	310	360	410
Холодопроизводительность	Ном.		кВт	101	121	138	163	183	213	255	306	359	411
Регулирование	Способ							Бесступ	енчатое				
производительности	Минимальная пр	оизводительност	%					2	.5				
Потребляемая мощность	Охлаждение	Ном.	кВт	39,0	47,5	53,9	60,9	69,0	72,4	87,8	112,1	134,3	147
EER				2,58	2,54	2,55	2,67	2,64	2,95	2,90	2,73	2,67	2,80
ESEER				2,	.84	2,67	2,86	2,75	2,96	3,07	2,94	3,11	3,22
Размеры	Блок	ВхШхГ	MM	2273x12	292x2165	2273x12	92x3065	2273x12	92x3965		2223x22	236x3070	
Bec	Блок		кг	16	584	18	861	20	186		29	19	
	Эксплуатационн	ный вес	кг	16	599	18	881	21	16		29	963	
Водяной	Тип						Пл	астинчатый	теплообменн	łик			
теплообменник	Объем воды		л	12	15	17	20	24	30	25	30	36	44
	Ном. расход	Охлаждение	л/сек	4,8	5,8	6,6	7,8	8,7	10,2	12,2	14,6	17,2	19,7
	Перепад давления	Охлаждение Теплообменн	к КПа	24	25	23	24	22	21	47	4	18	45
Воздушный теплообменник	Тип					(Эребренный	с интегриро	ванным пере	еохладителе	М		
Вентилятор	Расход воздуха	Ном.	л/сек	10 924	10 576	16 386	15 865	21 848	21 153	32	772	31	729
	Скорость		об/мин					90	00				
Уровень звуковой мощности	Охлаждение	Ном.	дБА		9	2		93		9	4		95
Уровень звукового давления	Охлаждение	Ном.	дБА			74				7	5		76
Компрессор	Тип				Полугерм	тичный одн	овинтовой к	омпрессор		Асимметр	оичный одно	винтовой ко	мпрессор
Рабочий	Сторона воды	Охлаждение Мин.~Ма	c. °CDB					-15	~15				
диапазон	Сторона воздуха	Охлаждение Мин.~Ма	c. °CDB					-18	~48				
Хладагент	Тип							R-1	34a				
	Заправка		кг	18	21	23	28	30	33	4	6	56	60
	Контуры	Количество							1				
Подсоединение труб	Вход/выход вод	ы из испарителя	наруж.д.)					3	3"				
Электропитание	Фаза / Частота /	Напряжение	Гц/В					3~/50	0/400				

- > Один контур хладагента с одновинтовым компрессором
- > Низкие уровни шума при работе
- Компактная конструкция с пластинчатым теплообменником
- Широкий рабочий диапазон (температура наружного воздуха до -18°C)
- → Температура хладоносителя до -15°C
- > Контроллер MicroTech III для эффективного управления и простого соединения с интерфейсами LonWorks, Bacnet, Ethernet TCP/IP или Modbus

СИСТЕМА СТАНДАРТНОЙ УСТАНОВКИ

- > Стартер Звезда-Треугольник (y d)
- > Двойная уставка
- > Контроль фаз
- > Электрический нагреватель испарителя
- > Электронно-расширительный вентиль
- > Запорный вентиль на нагнетании
- > Запорный вентиль на всасывании
- Датчик температуры атмосферного воздуха и сброс заданного значения
- > Счетчик рабочего времени
- > Контактор для общей неисправности
- Сброс уставки, ограничение нагрузки и аварийный сигнал на внешнем устройстве
- > Автоматические выключатели вентиляторов
- > Блокировка главного выключателя

- > Полная рекуперация теплоты
- > Частичная рекуперация теплоты
- > Плавный старт
- > Рассольная версия
- Реле тепловой защиты компрессора
- Регулирование минимального/максимального напряжения
- > Электросчетчик
- > Конденсаторы для компенсации коэффициента мощности
- > Ограничение тока
- > Изоляция испарителя 20мм
- > Контроль скорости
- Защита теплообменника конденсатора
- Трубки конденсатора Cu-cu
- > Трубки конденсатора Cu-cu sn
- > Антикоррозийное покрытие теплообменника
- > Реле протока испарителя
- Манометры стороны высокого давления
- Комплект для транспортировки (контейнер)
- > Резиновая антивибрационная опора
- > Пружинная антивибрационная опора
- > Один центробежный насос (низкий и высокий напор)
- Два центробежных насоса (низкого или высокого напора) - Нет для размеров 100 и 120)
- Предохранительный клапан на 2 значения давления с отводом
- > Автоматические выключатели компрессора
- Регулирование скорости вентилятора (+тихая работа вентилятора)
- > Наружный бак с корпусом или без (500 и 1000л)
- > Манометры стороны низкого давления
- Комплект для перевозки
- > Обработка теплообменника Blygold
- > Защитные панели теплообменника конденсатора

MicroTech III

EWAD100-210E-SL

Только охлаждение

Стандартная эффективность Низкий уровень шума

Модель					100	120	130	160	180	210	250	300	350	400
Холодопроизводительность	Ном.			кВт	98	116	134	157	177	208	248	295	344	397
Регулирование	Способ								Бесступ	енчатое				
производительности	Минимальная пр	оизводите	ельность	%					2	5				
Потребляемая мощность	Охлаждение	Ном.		кВт	39,2	48,3	53,4	60,8	68,3	72,8	85,4	111,2	135,0	152
EER					2,49	2,39	2,50	2,57	2,59	2,86	2,90	2,65	2,55	2,62
ESEER					2,92	2,89	2,78	2,92	3,00	3,24	3,41	3,28	3,22	3,33
Размеры	Блок	ВхШхГ		MM	2273x12	92x2165	2273x12	92x3065	2273x12	92x3965		2223x22	236x3070	
Bec	Блок			кг	17	'84	19	61	21	86		30)29	
	Эксплуатационн	ный вес		кг	17	'99	19	81	22	16		30	073	
Водяной	Тип							Пл	астинчатый :	геплообменн	łик			
теплообменник	Объем воды			Л	12	15	17	20	24	30	25	30	36	44
	Ном. расход	Охлажде	ние	л/сек	4,7	5,5	6,4	7,5	8,4	10,0	11,9	14,1	16,5	19,0
	Перепад давления	Охлаждение	Теплообменник	кПа	2	:3	22	23	21	20	4	5	44	42
Воздушный теплообменник	Тип						(Оребренный	с интегриро	ванным пере	еохладителе	и		
Вентилятор	Расход воздуха	Ном.		л/сек	8373	8144	12 560	12 216	16 747	16 288	25	120	24	432
	Скорость			об/мин					70	00				
Уровень звуковой мощности	Охлаждение	Ном.		дБА	8	19		90			9	2		93
Уровень звукового давления	Охлаждение	Ном.		дБА			71				7	'3		74
Компрессор	Тип					Полугерме	тичный одн	овинтовой к	омпрессор		Асимметр	оичный одно	винтовой ко	мпрессор
Рабочий	Сторона воды	Охлаждение	Мин.~Макс.	°CDB					-15	~15				
диапазон	Сторона воздуха	Охлаждение	Мин.~Макс.	°CDB					-18	~48				
Хладагент	Тип								R-1	34a				
	Заправка			кг	18	21	23	28	30	33	4	6	56	60
	Контуры	Количест	гво							1				
Подсоединение труб	Вход/выход вод	ы из испа	оителя (на	аруж.д.)					3	3"				
Электропитание	Фаза / Частота /	Напряжен	ние	Гц/В					3~/50	0/400				

- > Стандартная эффективность
- Конфигурация со стандартным уровнем шума: вентилятор конденсатора 920 об/мин., резиновая противовибрационная опора под компрессором
- Одновинтовой компрессор с плавным регулированием производительности
- > Оптимизирован для работы с хладагентом R-134a
- > Koнтроллер MicroTech III для эффективного управления и простого соединения с интерфейсами LonWorks, Bacnet, Ethernet TCP/IP или Modbus
- Широкий рабочий диапазон (температура наружного воздуха до -18°C)

СИСТЕМА СТАНДАРТНОЙ УСТАНОВКИ

- > Стартер Звезда-Треугольник (Y D)
- > Двойная уставка
- > Контроль фаз
- > Cоединение VICTAULIC для испарителя
- Расчетное давление на стороне испарителя по воде - 10 бар
- > Электрический нагреватель испарителя
- Электронно-расширительный
- > Запорный вентиль на нагнетании
- > Запорный вентиль на всасывании
- Датчик температуры атмосферного воздуха и сброс заданного значения
- Счетчик рабочего времени
- > Контактор для общей неисправности
- Сброс уставки, ограничение нагрузки и аварийный сигнал на внешнем устройстве
- > Автоматические выключатели вентиляторов
- > Блокировка главного выключателя

- > Полная рекуперация теплоты один контур
- Частичная рекуперация теплоты
- Плавный старт
- Рассольная версия
- Реле тепловой защиты компрессора
- > Контроль минимального/максимального напряжения
- Электросчетчик
- > Конденсаторы для компенсации коэффициента мощности
- Ограничение тока
- Соединение фланцем для испарителя
- > Изоляция испарителя 20мм
- > Тихий режим вентилятора
- Контроль скорости
- Защита теплообменника конденсатора
- Трубки конденсатора Си-си
- > Трубки конденсатора Cu-cu sn
- > Антикоррозийное покрытие теплообменника
- Реле протока испарителя
- > Манометры стороны высокого давления
- Комплект для транспортировки (контейнер)
- > Резиновая антивибрационная опора
- Пружинная антивибрационная опора
- Один центробежный насос (низкий напор)
- Один центробежный насос (высокий напор)
- Два центробежных насоса (низкий напор)
- Два центробежных насоса (высокий напор)
- два центрооежных насоса (высокий н Внешний бак без корпуса (500 л)
- Внешний бак без корпуса (1000 л)
- Внешний бак (500 л) с корпусом
 Внешний бак (1000 л) с корпусом
- Предохранительный клапан на 2 значения давления с отводом
- > Автоматические выключатели компрессора
- Регулирование скорости вентилятора (+тихая работа вентилятора)
- Осевые вентиляторы с напором 250 Па
- > Манометры стороны низкого давления
- > Подвод воды испарителя справа
- > Стартер компрессора с инверторным управлением
- У Комплект для перевозки
- > Защитные панели теплообменника конденсатора
- > Обработка теплообменника Blygold

MicroTech III

EWAD390D-SS

Только охлаждение

Стандартная эффективность Стандартный уровень шума

Модель					390	440	470	510	530	560	580
Холодопроизводительность	Ном.			кВт	388	435	463	500	529	553	575
Регулирование	Способ							Бесступенчатое			
производительности	Минимальная пр	оизводите	льность	%				13			
Потребляемая мощность	Охлаждение	Ном.		кВт	154	165	169	186	196	207	199
EER					2,52	2,63	2,74	2,	70	2,67	2,89
ESEER					3,24	3,42	3,36	3,38	3,37	3,40	3,26
Размеры	Блок	ВхШхГ		мм	2223x2234x3139			2223x22	34x4040		
Bec	Блок			кг	2960	4030	4220		4230		4235
	Эксплуатационн	ный вес		кг	3090	4195			4395		
Водяной	Тип						Однопр	оходный кожухот	рубный		
теплообменник	Объем воды			Л	130	165	175		165		160
	Ном. расход	Охлажде	ние	л/сек	18,6	20,8	22,2	24,0	25,4	26,5	27,6
	Перепад давления	Охлаждение	Теплообменник	кПа	46	38	67	47	52	57	51
Воздушный теплообменник	Тип						Оребренный с и	нтегрированным г	ереохладителем		
Вентилятор	Расход воздуха	Ном.		л/сек	32 772	31 729		43	696		42 306
	Скорость			об/мин				890			
Уровень звуковой мощности	Охлаждение	Ном.		дБА	96		97		98	!	99
Уровень звукового давления	Охлаждение	Ном.		дБА			77			79	
Компрессор	Тип				Попутерметичный одновинговой компрессор		Аси	мметричный одно	винтовой компре	ссор	
Рабочий	Сторона воды	Охлаждение	Мин.~Макс.	°CDB				-15~15			
диапазон	Сторона воздуха	Охлаждение	Мин.~Макс.	°CDB				-18~48			
Хладагент	Тип							R-134a			
	Контуры	Количест	во		56	60	70	76	82	87	92
Контур охлаждения	Заправка			кг	1			5,5"			
Подсоединение труб	Вход/выход вод	ы из испар	оителя (на	аруж.д.)				3~/50/400			
Электропитание	Фаза / Частота /	Напряжен	ние	Гц/В							

- Стандартная эффективность
- Конфигурация с низким уровнем шума: вентилятор конденсатора 715/900 об/мин., резиновая противовибрационная опора под компрессором, звукоизоляционный кожух компрессора
- Одновинтовой компрессор с плавным регулированием производительности
- Оптимизирован для работы с хладагентом R-134a
- Контроллер MicroTech III для эффективного управления и простого соединения с интерфейсами LonWorks, Bacnet, Ethernet TCP/IP или Modbus
- Широкий рабочий диапазон (температура наружного воздуха до -18°C)

- Стартер Звезда-Треугольник (Y D)
- Двойная уставка
- Контроль фаз
- Соединение VICTAULIC для испарителя
- Расчетное давление на стороне испарителя по воде 10 бар
- Электрический нагреватель испарителя
- Электронно-расширительный вентиль
- Запорный вентиль на нагнетании
- Запорный вентиль на всасывании
- Датчик температуры атмосферного воздуха и сброс заданного значения
- Счетчик рабочего времени
- Контактор для общей неисправности
- Сброс уставки, ограничение нагрузки и аварийный сигнал на внешнем устройстве
- Автоматические выключатели вентиляторов
- Блокировка главного выключателя
- Изоляция испарителя 20мм
- Дифференциальное реле давления воды на испарителе

- Полная рекуперация теплоты один контур
- Частичная рекуперация теплоты
- Плавный старт
- Рассольная версия
- Реле тепловой защиты компрессора
- Контроль минимального/максимального напряжения
- Электросчетчик
- Конденсаторы для компенсации коэффициента мощности
- Ограничение тока
- Соединение фланцем для испарителя
- Speedtrol (устройство управления скоростью вентилятора - вкл/выкл - до -18°C)
- Защита теплообменника конденсатора
- Трубки конденсатора Си-си
- Трубки конденсатора Cu-cu sn
- Антикоррозийное покрытие теплообменника
- Реле протока испарителя
- Манометры стороны высокого давления
- Комплект для транспортировки (контейнер)
- Резиновая антивибрационная опора
- Пружинная антивибрационная опора
- Один центробежный насос (10 разных моделей) Два центробежных насоса (10 разных моделей)
- Внешний бак без корпуса (500 л)
- Внешний бак без корпуса (1000 л) Внешний бак (500 л) с корпусом
- Внешний бак (1000 л) с корпусом
- Предохранительный клапан на 2 значения давления с отводом
- Автоматические выключатели компрессора
- Регулирование скорости вентилятора (+тихая работа вентилятора)
- Манометры стороны низкого давления
- Стартер компрессора с инверторным управлением
- Комплект для перевозки
- Осевые вентиляторы с напором 250 Па
- Защитные панели для теплообменника конденсатора
- Обработка теплообменника Blygold
- Подвод воды испарителя справа

MicroTech III

EWAD400-530D-SL

Только охлаждение

Стандартная эффективность Низкий уровень шума

Модель					180	200	230	250	260	280	300	320	370	400	440	480	510	530
Холодопроизводительность	Ном.			кВт	183	197	224	244	260	274	297	320	368	402	438	475	503	531
Регулирование	Способ										Бесступ	енчатое						
производительности	Минимальная пр	оизводите	ельность	%							1	3						
Потребляемая мощность	Охлаждение	Ном.		кВт	82,0	80,2	85,6	94,4	102	109	121	125	135	171	172	188	205	197
EER					2,24	2,46	2,62	2,58	2,54	2,50	2,46	2,56	2,72	2,36	2,55	2,53	2,46	2,70
ESEER					2,91	3,04	3,15	3,08	3,12	3,08	3,05	3,10	3,23	3,49	3,48	3,41	3,51	3,62
Размеры	Блок	ВхШхГ		мм	2355x22	34x2239		235	5x2234x3	139		2355x22	34x4040		222	23x2234x4	1040	
Bec	Блок			кг	2475	2470			2860			31	87	4030	4220	42	30	4235
	Эксплуатационн	ный вес		кг	25	00			2960			33	00	4195		43	95	
Водяной	Тип				Пластинчатый	геплообменник					Однопр	оходный	кожухот	грубный				
теплообменник	Объем воды			Л	25	30			100			13	30	165	1	70	165	160
	Ном. расход	Охлажде	ние	л/сек	8,8	9,4	10,7	11,7	12,5	13,1	14,2	15,3	17,7	19,3	21,0	22,8	24,1	25,4
	Перепад давления	Охлаждение	Теплообменник	кПа	29	22	58	49	54	59	60	55	67	48	62	54	48	43
Воздушный теплообменник	Тип								Оребре	нный с иі	нтегриро	ванным п	ереохла	дителем				
Вентилятор	Расход воздуха	Ном.		л/сек	15 295	14 868	22	943	22 623	22	302	30 !	591	24 432		33 494		32 576
	Скорость			об/мин					900							705		
Уровень звуковой мощности	Охлаждение	Ном.		дБА				94				95	97		94		g	6
Уровень звукового давления	Охлаждение	Ном.		дБА				7	'5				78		75		76	77
Компрессор	Тип					Г	Толугери	етичный	одновин	товой ко	мпрессој)		Асимме	тричный	одновинт	овой ком	прессор
Рабочий	Сторона воды	Охлаждение	Мин.~Макс.	°CDB							-15	~15						
диапазон	Сторона воздуха	Охлаждение	Мин.~Макс.	°CDB							-18	~48						
Хладагент	Тип										R-1	34a						
	Контуры	Количест	гво								:	2						
Контур охлаждения	Заправка			кг	36	42	48	50	54		58		66	70	76	82	84	86
Подсоединение труб	Вход/выход воді	ы из испар	оителя (на	аруж.д.)	3	,"			4"						5″			
Электропитание	Фаза / Частота /	Напряжен	ние	Гц/В							3~/5	0/400						

- Стандартная эффективность
- Конфигурация с уменьшенным уровнем шума: вентилятор конденсатора 680/715 об/мин., резиновая противовибрационная опора под компрессором, звукоизоляционный кожух компрессора
- Одновинтовой компрессор с плавным регулированием производительности
- Оптимизирован для работы с хладагентом R-134a
- Контроллер MicroTech III для эффективного управления и простого соединения с интерфейсами LonWorks, Bacnet, Ethernet TCP/IP или Modbus
- Широкий рабочий диапазон (температура наружного воздуха до -18°C)

СИСТЕМА СТАНДАРТНОЙ УСТАНОВКИ

- Стартер Звезда-Треугольник (Y D)
- Двойная уставка
- Контроль фаз
- Соединение VICTAULIC для испарителя
- Расчетное давление на стороне испарителя по воде - 10 бар
- Электрический нагреватель испарителя
- Электронно-расширительный вентиль
- Запорный вентиль на нагнетании
- Запорный вентиль на всасывании
- Датчик температуры атмосферного воздуха и сброс заданного значения
- Счетчик рабочего времени
- Контактор для общей неисправности
- Сброс уставки, ограничение нагрузки и аварийный сигнал на внешнем устройстве
- Автоматические выключатели вентиляторов
- Блокировка главного выключателя
- Изоляция испарителя 20мм
- Дифференциальное реле давления воды на

- Полная рекуперация теплоты один контур
- Частичная рекуперация теплоты
- Плавный старт
- Рассольная версия
- Реле тепловой защиты компрессора
- Контроль минимального/максимального напряжения
- Электросчетчик
- Конденсаторы для компенсации коэффициента мощности
- Ограничение тока
- Соединение фланцем для испарителя
- Контроль скорости
- Защита теплообменника конденсатора
- Трубки конденсатора Cu-cu
- Трубки конденсатора Cu-cu sn
- Антикоррозийное покрытие теплообменника
- Реле протока испарителя
- Манометры стороны высокого давления
- Комплект для транспортировки (контейнер)
- Резиновая антивибрационная опора
- Пружинная антивибрационная опора
- Один центробежный насос (10 разных моделей)
- Два центробежных насоса (10 разных моделей) Внешний бак без корпуса (500 л)
- Внешний бак без корпуса (1000 л)
- Внешний бак (500 л) с корпусом
- Внешний бак (1000 л) с корпусом
- Автоматические выключатели компрессора
- Регулирование скорости вентилятора (+тихая работа вентилятора)
- Осевые вентиляторы с напором 250 Па
- Подвод воды испарителя справа
- Стартер компрессора с инверторным управлением
- Комплект для перевозки
- Манометры стороны низкого давления
- Защитные панели теплообменника конденсатора
- Обработка теплообменника Blygold



MicroTech III

EWAD400-530D-SR

Только охлаждение

Стандартная эффективность Пониженный уровень шума

Модель					180	190	220	240	250	270	280	310	370	400	440	480	510	530
Холодопроизводительность	Ном.		1	кВт	177	190	218	237	251	263	277	310	364	402	438	475	503	531
Регулирование	Способ										Бесступ	енчатое						
производительности	Минимальная пр	оизводите	льность	%							1	3						
Потребляемая мощность	Охлаждение	Ном.	ı	кВт	84,5	83,1	86,2	95,6	104	112	123	127	140	171	172	188	205	197
EER					2,09	2,28	2,53	2,48	2,41	2,34	2,25	2,45	2,60	2,36	2,55	2,53	2,46	2,70
ESEER					2,81	2,93	3,18	3,08	3,09	3,02	2,99	3,11	3,25	3,49	3,48	3,41	3,51	3,62
Размеры	Блок	ВхШхГ	ı	мм	2355x22	34x2239		235	5x2234x3	139		2355x22	34x4040		222	3x2234x4	1040	
Bec	Блок		1	кг	26	20			2890			33	35	4040		42	40	
	Эксплуатационн	ный вес	1	кг	26	50			3100			34	50	4342		45	42	
Водяной	Тип				Пластинчатый	теплообменник					Однопр	оходный	кожухот	грубный				
теплообменник	Объем воды		J	Л	25	30			100			13	30	165	1	70	165	160
	Ном. расход	Охлажден	ние ј	л/сек	8,5	9,1	10,4	11,3	12,0	12,6	13,3	14,9	17,4	19,3	21,0	22,8	24,1	25,4
	Перепад давления	Охлаждение	Теплообменник в	кПа	27	20	55	47	51	5	5	53	65	48	62	54	48	43
Воздушный теплообменник	Тип								Оребре	нный с иі	нтегриро	ванным п	ереохла	дителем				
Вентилятор	Расход воздуха	Ном.	J	л/сек	12 389	11 928	18	583	18 237	17	892	24	777	24 432		33 494		32 576
	Скорость		(об/мин					680							705		
Уровень звуковой мощности	Охлаждение	Ном.		дБА				89				90	92		91		92	93
Уровень звукового давления	Охлаждение	Ном.		дБА				7	0				73		71		7	'3
Компрессор	Тип					Г	Толугери	етичный	одновин	товой ко	мпрессој)		Асимме	тричный	одновинт	овой ком	прессор
Рабочий	Сторона воды	Охлаждение	Мин.~Макс.	°CDB							-15	~15						
диапазон	Сторона воздуха	Охлаждение	Мин.~Макс. С	°CDB							-18	~48						
Хладагент	Тип										R-1	34a						
	Заправка		ı	кг	36	42	48	50	54		58		66	70	76	82	84	86
	Контуры	Количест	во								:	2						
Подсоединение труб	Вход/выход вод	ы из испар	ителя (нар	руж.д.)	3	3"			4"						5"			
Электропитание	Фаза / Частота /	Напряжен	ие I	Гц/В							3~/5	0/400						

- › Стандартная эффективность
- Конфигурация с очень низким уровнем шума: вентилятор конденсатора 500 об/мин., резиновая противовибрационная опора под компрессором, звукоизоляционный кожух компрессора
- Одновинтовой компрессор с плавным регулированием производительности
- > Оптимизирован для работы с хладагентом R-134a
- > Kонтроллер MicroTech III для эффективного управления и простого соединения с интерфейсами LonWorks, Bacnet, Ethernet TCP/IP или Modbus
- Широкий рабочий диапазон (температура наружного воздуха до -18°C)

- Стартер Звезда-Треугольник (Y D)
- > Двойная уставка
- > Контроль фаз
- > Coeдинение VICTAULIC для испарителя
- > Расчетное давление на стороне испарителя по воде 10 бар
- Электрический нагреватель испарителя
- > Электронно-расширительный вентиль
- > Запорный вентиль на нагнетании
- > Запорный вентиль на всасывании
- Датчик температуры атмосферного воздуха и сброс заданного значения
- > Счетчик рабочего времени
- > Контактор для общей неисправности
- Сброс уставки, ограничение нагрузки и аварийный сигнал на внешнем устройстве
- > Автоматические выключатели вентиляторов
- > Блокировка главного выключателя
- Регулирование скорости вентилятора (+тихая работа вентилятора)

- > Полная рекуперация теплоты один контур
- > Частичная рекуперация теплоты
- Плавный старт
- Рассольная версия
- > Реле тепловой защиты компрессора
- > Контроль минимального/максимального напряжения
- Электросчетчик
- > Конденсаторы для компенсации коэффициента мощности
- > Ограничение тока
- Соединение фланцем для испарителя
- > Изоляция испарителя 20мм
- Speedtrol (устройство управления скоростью вентилятора - вкл/выкл - до -18°С)
- > Защита теплообменника конденсатора
- Трубки конденсатора Сu-cu
- > Трубки конденсатора Cu-cu sn
- > Антикоррозийное покрытие теплообменника
- Реле протока испарителя
- > Манометры стороны высокого давления
- Комплект для транспортировки (контейнер)
- > Резиновая антивибрационная опора
- > Пружинная антивибрационная опора
- > Один центробежный насос (низкий напор)
- > Один центробежный насос (высокий напор)
- Два центробежных насоса (низкий напор)
- два центробежных насоса (низкий напор)
 Два центробежных насоса (высокий напор)
- Внешний бак без корпуса (500 л)
- > Внешний бак без корпуса (1000 л)
- > Внешний бак (500 л) с корпусом
- Внешний бак (1000 л) с корпусом
- Предохранительный клапан на 2 значения давления с отводом
- > Автоматические выключатели компрессора
- > Комплект для перевозки
- > Дифференциальное реле давления воды на испарителе
- > Стартер компрессора с инверторным управлением
- Манометры стороны низкого давления
- > Осевые вентиляторы с напором 250 Па
- защитные панели теплообменника конденсатораОбработка теплообменника Blygold
- Подвод воды испарителя справа

MicroTech III

EWAD230-410D-SX

Только охлаждение

Стандартная эффективность Очень низкий уровень шума

Модель					210	230	250	270	290	300	310	370	410	450	490
Холодопроизводительность	Ном.			кВт	202	230	252	270	285	298	308	369	412	449	490
Регулирование	Способ								Бе	сступенчат	oe				
производительности	Минимальная пр	оизводите	льность	%						13					
Потребляемая мощность	Охлаждение	Ном.		кВт	80,8	86,0	94,4	105	115	127	137	150	171	175	189
EER					2,50	2,68	2,67	2,56	2,47	2,35	2,25	2,46	2,41	2,56	2,60
ESEER					3,24	3,50	3,39	3,42	3,32	3,27	3,14	3,12	3,35	3,45	3,44
Размеры	Блок	ВхШхГ		MM	2420x2234x3139				2420x22	34x4040				2420x22	34x4940
Bec	Блок			кг	3110	34	75	3425		3430		3560	4302	4506	4581
	Эксплуатационн	ный вес		КГ	3200			35	90			3735	4472	4676	4746
Водяной	Тип								Однопрохо	дный кожу	хотрубный				
теплообменник	Объем воды].	Л	90	1	15	165		160		175	1	70	165
	Ном. расход	Охлажден	ние .	л/сек	9,7	11,0	12,1	12,9	13,7	14,3	14,7	17,7	19,7	21,5	23,5
	Перепад давления	Охлаждение	Теплообменник	кПа	45	34	3	38	35	38	41	45	44	50	45
Воздушный теплообменник	Тип							Оребрен	ный с инте	рированнь	ім переохла	адителем			
Вентилятор	Расход воздуха	Ном.		л/сек	12 876	17 893			17 169			26	496	28 981	33 120
	Скорость			об/мин						500					
Уровень звуковой мощности	Охлаждение	Ном.		дБА	84				8	5				8	16
Уровень звукового давления	Охлаждение	Ном.		дБА					65					6	6
Компрессор	Тип						Полугерме	тичный одн	овинтовой і	компрессор)		Асимметричн	ый одновинтов	ой компрессор
Рабочий	Сторона воды	Охлаждение	Мин.~Макс.	°CDB						-15~15					
диапазон	Сторона воздуха	Охлаждение	Мин.~Макс.	°CDB						-18~48					
Хладагент	Тип									R-134a					
	Контуры	Количест	во							2					
Контур охлаждения	Заправка			кг	50	6			60			65	70	76	82
Подсоединение труб	Вход/выход вод	ы из испар	ителя (на	руж.д.)				4"						5"	
Электропитание	Фаза / Частота /	Напряжен	ие	Гц/В						3~/50/400					

- Максимальная эффективность
- Конфигурация со стандартным уровнем шума: вентилятор конденсатора 900/920 об/мин., резиновая противовибрационная опора под компрессором
- Одновинтовой компрессор с плавным регулированием производительности
- Оптимизирован для работы с хладагентом R-134a
- Контроллер MicroTech III для эффективного управления и простого соединения с интерфейсами LonWorks, Bacnet, Ethernet TCP/IP или Modbus
- Широкий рабочий диапазон (температура наружного воздуха до -18°C)

- Стартер Звезда-Треугольник (Y D)
- Двойная уставка
- Контроль фаз
- Coeдинение VICTAULIC для испарителя
- Расчетное давление на стороне испарителя по воде - 10 бар
- Электрический нагреватель испарителя
- Электронно-расширительный вентиль
- Запорный вентиль на нагнетании
- Запорный вентиль на всасывании
- Датчик температуры атмосферного воздуха и сброс заданного значения
- Счетчик рабочего времени
- Контактор для общей неисправности
- Сброс уставки, ограничение нагрузки и аварийный сигнал на внешнем устройстве
- Автоматические выключатели вентиляторов
- Блокировка главного выключателя

- Полная рекуперация теплоты один контур
- Частичная рекуперация теплоты
- Плавный старт
- Рассольная версия
- Реле тепловой защиты компрессора
- Контроль минимального/максимального напряжения
- Электросчетчик
- Конденсаторы cosfi 0,9
- Ограничение тока
- Соединение фланцем для испарителя
- Изоляция испарителя 20мм
- Тихий режим вентилятора
- Speedtrol (устройство управления скоростью вентилятора вкл/выкл до -18°C)
- Защита теплообменника конденсатора
- Трубки конденсатора Си-си
- Трубки конденсатора Cu-cu sn
- Антикоррозийное покрытие теплообменника
- Реле протока испарителя
- Манометры стороны высокого давления
- Комплект для транспортировки (контейнер)
- Резиновая антивибрационная опора
- Пружинная антивибрационная опора
- Один центробежный насос (10 разных моделей) Два центробежных насоса (10 разных моделей)
- Внешний бак без корпуса (500 л)
- Внешний бак без корпуса (1000 л)
- Внешний бак (500 л) с корпусом
- Внешний бак (1000 л) с корпусом
- Предохранительный клапан на 2 значения давления с отводом
- Автоматические выключатели компрессора
- Регулирование скорости вентилятора (+тихая работа вентилятора)
- Осевые вентиляторы с напором 250 Па
- Манометры стороны низкого давления
- Подвод воды испарителя справа
- Стартер компрессора с инверторным управлением Комплект для перевозки
- Защитные панели теплообменника конденсатора Обработка теплообменника Blygold
- Подвод воды испарителя справа

MicroTech III

EWAD250D-XS

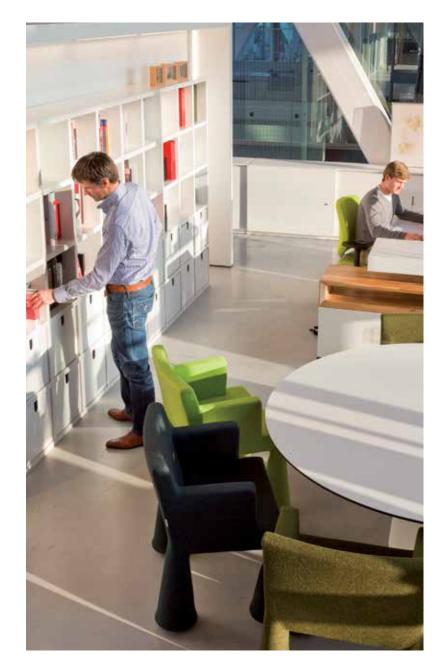
Только охлаждение Максимальная эффективность Стандартный уровень шума

Модель					250	280	300	330	350	380	400	470	520	580	620
Холодопроизводительность	Ном.			кВт	246	274	300	326	350	374	399	467	522	573	620
Регулирование	Способ								Бе	сступенчат	oe				
производительности	Минимальная пр	оизводите.	пьность	%						13					
Потребляемая мощность	Охлаждение	Ном.		кВт	80,1	88,2	95,4	105	114	121	129	152	169	183	196
EER					3,07	3,11	3,15	3,10	3,06	3,08	3,10	3,07	3,09	3,12	3,16
ESEER					3,41	3,45	3,47	3,69	3,51	3,42	3,41	3,68	3,79	3,82	3,75
Размеры	Блок	ВхШхГ		MM	2355x2234x3138			2355x22	34x4040			2223x2234x4040	22	23x2234x49	40
Bec	Блок			кг	2905	32	85	3235		3240		3510	4670	46	85
	Эксплуатационн	ый вес		кг	3000			34	00			3780		4940	
Водяной	Тип								Однопрохо	одный кожу	хотрубный				
теплообменник	Объем воды			Л	95	11	15	165		160		27	70	25	55
	Ном. расход	Охлажден	ие	л/сек	11,8	13,1	14,4	15,6	16,7	17,9	19,1	22,4	25,0	27,4	29,7
	Перепад давления	Охлаждение	Теплообменник	кПа	48	45	49	46	51	58	64	47	63	56	38
Воздушный теплообменник	Тип							Оребрен	ный с инте	рированнь	ім переохл	адителем			
Вентилятор	Расход воздуха	Ном.		л/сек	22 302	30 591		29 736		43 001	42 306	43 696		54 620	
	Скорость			об/мин			900					89	90		
Уровень звуковой мощности	Охлаждение	Ном.		дБА			97					9	9		
Уровень звукового давления	Охлаждение	Ном.		дБА			78					7	9		
Компрессор	Тип						Полугерме	гичный одн	овинтовой і	компрессор)		Асимметричн	ый одновинтово	ой компрессор
Рабочий	Сторона воды	Охлаждение	Мин.~Макс.	°CDB						-15~15					
диапазон	Сторона воздуха	Охлаждение	Мин.~Макс.	°CDB						-18~48					
Хладагент	Тип									R-134a					
	Контуры	Количест	30							2					
Контур охлаждения	Заправка			кг	58	66		76		73	76	86		100	
Подсоединение труб	Вход/выход воді	ы из испар	ителя (на	руж.д.)				4"					6	5"	
Электропитание	Фаза / Частота /	Напряжен	ие	Гц/В						3~/50/400					

- Максимальная эффективность
- Конфигурация с уменьшенным уровнем шума: вентилятор конденсатора 680/715 об/мин., резиновая противовибрационная опора под компрессором, звукоизоляционный кожух компрессора
- Одновинтовой компрессор с плавным регулированием производительности
- Оптимизирован для работы с хладагентом R-134a
- Контроллер MicroTech III для эффективного управления и простого соединения с интерфейсами LonWorks, Bacnet, Ethernet TCP/IP или Modbus
- Широкий рабочий диапазон (температура наружного воздуха до -18°C)

- Стартер Звезда-Треугольник (Y D)
- Двойная уставка
- Контроль фаз
- Coeдинение VICTAULIC для испарителя
- Расчетное давление на стороне испарителя по воде - 10 бар
- Электрический нагреватель испарителя
- Электронно-расширительный вентиль
- Запорный вентиль на нагнетании
- Запорный вентиль на всасывании
- Датчик температуры атмосферного воздуха и сброс заданного значения
- Счетчик рабочего времени
- Контактор для общей неисправности
- Сброс уставки, ограничение нагрузки и аварийный сигнал на внешнем устройстве
- Автоматические выключатели вентиляторов
- Блокировка главного выключателя

- Полная рекуперация теплоты один контур
- Частичная рекуперация теплоты
- Плавный старт
- Рассольная версия
- Реле тепловой защиты компрессора
- Контроль минимального/максимального напряжения
- Электросчетчик
- Конденсаторы для компенсации коэффициента мощности
- Ограничение тока
- Соединение фланцем для испарителя
- Изоляция испарителя 20мм
- Speedtrol (устройство управления скоростью вентилятора - вкл/выкл - до -18°C)
- Защита теплообменника конденсатора
- Трубки конденсатора Си-си
- Трубки конденсатора Cu-cu sn
- Антикоррозийное покрытие теплообменника
- Реле протока испарителя
- Манометры стороны высокого давления
- Комплект для транспортировки (контейнер)
- Резиновая антивибрационная опора
- Пружинная антивибрационная опора
- Один центробежный насос (10 разных моделей)
- Два центробежных насоса (10 разных моделей) Внешний бак без корпуса (500 л)
- Внешний бак без корпуса (1000 л)
- Внешний бак (500 л) с корпусом Внешний бак (1000 л) с корпусом
- Предохранительный клапан на
- 2 значения давления с отводом
- Автоматические выключатели компрессора
- Регулирование скорости вентилятора (+тихая работа вентилятора)
- Осевые вентиляторы с напором 250 Па
- Подвод воды испарителя справа
- Стартер компрессора с инверторным управлением
- Дифференциальное реле давления воды на испарителе
- Комплект для перевозки
- Защитные панели теплообменника конденсатора
- Обработка теплообменника Blygold
- Манометры стороны низкого давления



MicroTech III

EWAD270-390D-XR

Только охлаждение Понижен

Максимальная эффективность Пониженный уровень шума

Модель				240	270	300	320	350	370	390	460	510	560	600
Холодопроизводительность	Ном.		кВт	242	271	294	321	343	369	393	453	510	559	598
Регулирование	Способ							Бе	сступенчат	oe				
производительности	Минимальная пр	оизводитель	ность %						13					
Потребляемая мощность	Охлаждение	Ном.	кВт	81,6	88,0	96,3	107	117	121	129	154	169	185	200
EER				2,96	3,07	3,06	3,00	2,94	3,06	3,05	2,95	3,01	3,02	2,99
ESEER				3,47	3,55	3,53	3,66	3,55	3,81	3,64	3,73	3,89	3,91	3,80
Размеры	Блок	ВхШхГ	MM	2355x2234x3138			2355x22	34x4040			2223x2234x4040	22	23x2234x49	40
Bec	Блок		кг	3005	33	885	3335		3340		3610	4770	47	85
	Эксплуатационн	ный вес	кг	3100			35	00			3880		5040	
Водяной	Тип							Однопрохо	одный кожу	хотрубный				
теплообменник	Объем воды		л	95	1	15	165		160		27	'0	2	55
	Ном. расход	Охлаждени	е л/сек	11,6	13,0	14,1	15,4	16,4	17,7	18,8	21,7	24,4	26,8	28,6
	Перепад давления	Охлаждение Теп.	пообменник кПа	47	44	48	45	49	5	6	45	60	54	36
Воздушный теплообменник	Тип						Оребрен	ный с инте	рированнь	ім переохл	адителем			
Вентилятор	Расход воздуха	Ном.	л/сек	17 892	24 777		23 856		33 035	32 576	33 494		41 867	
	Скорость		об/мин			680					70)5		
Уровень звуковой мощности	Охлаждение	Ном.	дБА			92				93			94	
Уровень звукового давления	Охлаждение	Ном.	дБА			73					7-	4		
Компрессор	Тип					Полугерме	тичный одн	овинтовой	компрессор)		Асимметричн	ый одновинтово	ой компрессор
Рабочий	Сторона воды	Охлаждение Ми	ıн.~Макс. РСDВ						-15~15					
диапазон	Сторона воздуха	Охлаждение Ми	ıн.~Макс. °СDВ						-18~48					
Хладагент	Тип								R-134a					
	Контуры	Количество)						2					
Контур охлаждения	Заправка		кг	60	68			8	0				104	
Подсоединение труб	Вход/выход вод	ы из испари	геля (наруж.д.)				4"					6	5"	
Электропитание	Фаза / Частота /	Напряжение	е Гц/В						3~/50/400					
Электропитание	Фаза / Частота /	Напряжение	е ∣Гц/В						3~/50/400					

- Высокая температура окружающей среды
- Конфигурация со стандартным уровнем шума: вентилятор конденсатора 900/920 об/мин., резиновая противовибрационная опора под компрессором
- Одновинтовой компрессор с плавным регулированием производительности
- Оптимизирован для работы с хладагентом R-134а Контроллер MicroTech III для эффективного угравления и простого соединения с интерфейсами LonWorks, Bacnet, Ethernet TCP/İP или Modbus
- Широкий рабочий диапазон (температура наружного воздуха до -18°C)

- Стартер Звезда-Треугольник (Y D)
- Двойная уставка
- Контроль фаз
- Соединение VICTAULIC для испарителя Расчетное давление на стороне испарителя по воде - 10 бар
- Электрический нагреватель испарителя
- Электронно-расширительный вентиль Запорный вентиль на нагнетании
- Запорный вентиль на всасывании
- Датчик температуры атмосферного воздуха и сброс заданного значения
- Счетчик рабочего времени
- Контактор для общей неисправности
- Сброс уставки, ограничение нагрузки и аварийный сигнал на внешнем устройстве
- Автоматические выключатели вентиляторов
- Блокировка главного выключателя
- Изоляция испарителя 20 мм
- Дифференциальное реле давления воды на испарителе

- Полная рекуперация теплоты один контур
- Частичная рекуперация теплоты
- Плавный старт
- Рассольная версия
- Реле тепловой защиты компрессора
- Контроль минимального/максимального напряжения
- Электросчетчик
- Конденсаторы для компенсации коэффициента мощности
- Ограничение тока
- Соединение фланцем для испарителя
- Speedtrol (устройство управления скоростью вентилятора - вкл/выкл - до -18°C)
- Защита теплообменника конденсатора
- Трубки конденсатора Си-си
- Трубки конденсатора Cu-cu sn
- Антикоррозийное покрытие теплообменника
- Реле протока испарителя
- Манометры стороны высокого давления
- Комплект для транспортировки (контейнер)
- Резиновая антивибрационная опора
- Пружинная антивибрационная опора
- Один центробежный насос (10 разных моделей)
- Два центробежных насоса (10 разных моделей) Внешний бак без корпуса (500 л)
- Внешний бак без корпуса (1000 л)
- Внешний бак (500 л) с корпусом
- Внешний бак (1000 л) с корпусом Предохранительный клапан на
- 2 значения давления с отводом
- Автоматические выключатели компрессора
- Регулирование скорости вентилятора (+тихая работа вентилятора)
- Осевые вентиляторы с напором 250 Па
- Подвод воды испарителя справа
- Манометры стороны низкого давления
- Стартер компрессора с инверторным управлением
- Комплект для перевозки
- Защитные панели теплообменника конденсатора
- Обработка теплообменника Blygold
- Подвод воды испарителя справа

MicroTech III

EWAD340-450D-HS

Высокая температура окружающей среды Стандартный уровень шума

Только	охла	ЖД	ени	ie						Ста	анд	ap	ТНЬ	ΝЙ	ypo	ове	НЬ	шу	′ма
Модель					200	210	230	260	270	290	310	340	380	420	450	480	510	550	590
Холодопроизводительность	Ном.			кВт	194	208	233	255	272	288	305	334	379	413	446	476	512	545	585
Регулирование	Способ										Бес	ступенча	тое						
производительности	Минимальная пр	оизводите	ельность	%								13							
Потребляемая мощность	Охлаждение	Ном.		кВт	77,9	76,0	83,9	92,1	98,9	105	114	122	129	143	152	164	177	185	194
EER					2,49	2,73	2,	77	2,75	2,73	2,68	2,75	2,93	2,90	2,93	2,90	2,89	2,95	3,02
ESEER					3,01	3,17	3,21	3,08	3,16	3,13	3,	11	3,38	3,47	3,52	3,	51	3,54	3,63
Размеры	Блок	ВхШхГ		MM	2223x22	34x2239		222	3x2234x	3339			2223x22	34x4040)		2223x22	34x4940	i
Bec	Блок			КГ	2475	2470	28	65		2870		31	85	3277	3942	4356	43	61	4366
	Эксплуатационн	ный вес		КГ	25	00			2960			33	00	3447	4112		45	26	
Водяной	Тип				Пластинчатый	теплообменник					Одн	опроход	ный кох	кухотруб	ный				
теплообменник	Объем воды			л	25	30	ç	15		90		11	5		170		10	55	160
	Ном. расход	Охлажде	ние	л/сек	9,3	9,9	11,1	12,2	13,1	13,8	14,6	16,0	18,2	19,8	21,4	22,8	24,5	26,1	28,0
	Перепад давления	Охлаждение	Теплообменник	кПа	32	24	46	52	54	59	64	58	70	46	53	58	51	56	53
Воздушный теплообменник	Тип								Ope	ренный	с интегр	ированн	ым пере	охлади	гелем				
Вентилятор	Расход воздуха	Ном.		л/сек	21 848	21 153	32	772	32 250	31	729		43 696		42 306		54	620	
Двигатель вентилятора	Скорость	Охлаждение	Ном.	об/мин								890							
Уровень звуковой мощности	Охлаждение	Ном.		дБА				96				97	99	97		98		99	100
Уровень звукового давления	Охлаждение	Ном.		дБА				7	77				79	77		78		79	80
Компрессор	Тип						Полуг	ерметич	ный одн	овинтов	ой компр	eccop			Асимме	тричный	одновинт	овой ком	прессор
Рабочий	Сторона воды	Охлаждение	Мин.~Макс.	°CDB								-15~15							
диапазон	Сторона воздуха	Охлаждение	Мин.~Макс.	°CDB								-18~48							
Хладагент	Тип											R-134a							
	Контуры	Количес	гво									2							
Контур охлаждения	Заправка			КГ	36	42	4	4	55	5	6	58	66	70	90	95		100	
Подсоединение труб	Вход/выход вод	ы из испа	рителя (н	аруж.д.)	3	3"				4"						5	5"		
Электропитание	Фаза / Частота /	Напряже	ние	Гц/В							3	8~/50/40)						

- > Спиральный компрессор с инвертором пост.т. собственной разработки, единственный в своем роде на рынке, изготовлен по новейшей технологии Daikin
- > Система дублирования (до 12 компрессоров)
- > Самое высокое значение ESEER этого класса (до 5)
- > Низкий пусковой ток
- > Тихий режим работы

СИСТЕМА СТАНДАРТНОЙ УСТАНОВКИ

- > Двойная уставка
- > Cоединение VICTAULIC для испарителя
- > Изоляция испарителя 20мм
- > Электрический нагреватель испарителя
- > Электронно-расширительный вентиль
- Датчик температуры атмосферного воздуха и сброс заданного значения
- > Счетчик рабочего времени
- > Контактор для общей неисправности
- > Автоматические выключатели вентиляторов
- > Блокировка главного выключателя
- > Водяной фильтр
- > Реле протока испарителя

ОПЦИИ

- > Рассольная версия
- > Защита теплообменника конденсатора
- > Защита поверхности испарителя
- Трубки конденсатора Си-си
- > Трубки конденсатора Cu-Cu-Sn
- > Запорный вентиль нагнетательной линии
- > Запорный вентиль всасывающей линии
- Манометры стороны высокого давления
- > Манометры стороны низкого давления
- > Один центробежный насос (8 разных моделей)
- > Два центробежных насоса (4 разные модели)
- > Контроль фаз
- Регулирование минимального/ максимального напряжения
- > Электросчетчик
- Speedtrol (устройство управления скоростью вентилятора - вкл/выкл - до -10°С при охлаждении)
- Сброс уставки, ограничение нагрузки и аварийный сигнал на внешнем устройстве
- Автоматические выключатели компрессора
- > Реле заземления
- > Резиновая антивибрационная опора
- > Пружинная антивибрационная опора
- > Наружный бак без корпуса (500 или 1000л)
- > Наружный бак с корпусом (500 или 1000л)

MicroTech III

EWAQ210GZXS

EWAQ270-400GZXS

Максимальная эффективность Стандартный уровень шума Только охлажление

Модель					210	270	320	340	400			
Холодопроизводительность	Ном.			кВт	201	270	323	340	395			
Потребляемая мощность	Охлаждение	Ном.		кВт	72,5	94,0	122	117	144			
Регулирование	Способ				,		Бесступенчатое					
производительности	Минимальная пр	оизводите	ельность	%	14,4	14,3	14,9	14,3	14,8			
EER					2,77	2,87	2,64	2,92	2,75			
ESEER					4,79	4,89	4,90	4,77	4,78			
Размеры	Блок	ВхШхГ		мм	2270x1290x4450	2223x22	234x3560	2223x22	34x4460			
Вес	Блок			кг	1600	2100	2150	2400	2500			
	Эксплуатационн	ный вес		кг	1677	2233	2297	2575	2688			
Водяной	Тип					Пл	астинчатый теплообменн	ик				
теплообменник	Объем воды			Л	29	61	75	79	92			
	Ном. расход	Охлажде	ние	л/сек	9,6	12,9	15,4	16,3	18,9			
	Перепад давления	Охлаждение	Итого	кПа	27	14	15	16	18			
Воздушный теплообменник	Тип					Оребренный	с интегрированным пере					
Компрессор	Тип					Спиральн	ый компрессор с инверто	ром пост.т.				
	Количество				6	8	1	0	12			
Зентилятор	Тип						Прямая крыльчатка					
	Количество				4		6		3			
	Расход воздуха	Ном.		л/сек	17 473	26	209	34	946			
	Скорость			об/мин			920					
ровень звуковой мощности	Охлаждение	Ном.		дБА	92	g	94	9	6			
Уровень звукового давления	Охлаждение	Ном.		дБА	75		78		79			
Рабочий	Сторона воды	Охлаждение	Мин.~Макс.	°CDB			-8~20					
диапазон	Сторона воздуха	Охлаждение	Мин.~Макс.	°CDB			-18~43					
Хладагент	Тип						R-410A					
	Контуры	Количес	тво		1		2					
Контур охлаждения	Заправка			кг	48	7	72	9	6			
Подсоединение труб	Вход/выход вод	ы из испа	рителя (на	руж.д.)	2,5"		4,	5″				
Электропитание	Фаза / Частота /	Напряже	ние	Гц/В			3~/50/400					

- > Спиральный компрессор и инвертором пост.т. собственной разработки, единственный в своем роде на рынке, изготовлен по новейшей технологии Daikin
- > Встроенная система дублирования (до 12 компрессоров)
- > Самое высокое значение ESEER этого класса (до 5)
- > Низкий пусковой ток
- > Тихий режим работы

СИСТЕМА СТАНДАРТНОЙ УСТАНОВКИ

- > Двойная уставка
- > Cоединение VICTAULIC для испарителя
- > Изоляция испарителя 20мм
- > Электрический нагреватель испарителя
- > Электронно-расширительный вентиль
- Датчик температуры атмосферного воздуха и сброс заданного значения
- > Счетчик рабочего времени
- > Контактор для общей неисправности
- > Автоматические выключатели вентиляторов
- > Блокировка главного выключателя
- > Водяной фильтр
- > Реле протока испарителя

ОПЦИИ

- Рассольная версия
- > Защита теплообменника конденсатора
- > Защита поверхности испарителя
- Трубки конденсатора Си-си
- > Трубки конденсатора Cu-Cu-Sn
- > Запорный вентиль нагнетательной линии
- > Запорный вентиль всасывающей линии
- > Манометры стороны высокого давления
- > Манометры стороны низкого давления
- > Один центробежный насос (8 разных моделей)
- > Два центробежных насоса (4 разные модели)
- > Контроль фаз
- Регулирование минимального/ максимального напряжения
- > Электросчетчик
- Speedtrol (устройство управления скоростью вентилятора - вкл/выкл - до -10°С при охлаждении)
- Сброс уставки, ограничение нагрузки и аварийный сигнал на внешнем устройстве
- > Автоматические выключатели компрессора
- > Реле заземления
- > Резиновая антивибрационная опора
- Пружинная антивибрационная опора
- > Наружный бак без корпуса (500 или 1000л)
- > Наружный бак с корпусом (500 или 1000л)

MicroTech III

EWAQ190GZXR

EWAQ270-390GZXR

Только охлаждение Максимальная эффективность Пониженный уровень шума

Модель				190	270	320	340 390							
Холодопроизводительность	Ном.		кВт	196	264	315	334	386						
Потребляемая мощность	Охлаждение	Ном.	кВт	73,3	94,8	124	117	145						
Регулирование	Способ			Бесступенчатое										
производительности	ги Минимальная производительность %			14,4	14,3	14,9	14,3	14,8						
EER				2,68	2,79	2,53	2,86	2,65						
ESEER				4,88	4,95	5,05 5,07								
Размеры	Блок	ВхШхГ	мм	2270x1290x4450	2223x22	234x3560	2223x2234x4460	2223x2241x4460						
Bec	Блок		кг	1618	2124	2180	2430	2536						
	Эксплуатационн	ный вес	кг	1695	2257	2327	2605	2724						
Водяной	Тип			Пластинчатый теплообменник										
теплообменник	Объем воды		л	29	61	75	79	92						
	Ном. расход	Охлаждение	л/сек	9,4	12,6	15,0	16,0	18,5						
	Перепад давления	Охлаждение Итог	о кПа	26	26 14 15									
Воздушный теплообменник	Тип			Оребренный с интегрированным переохладителем										
Компрессор	Тип			Спиральный компрессор с инвертором пост.т.										
	Количество			6	8	1	0	12						
Вентилятор	Тип			Прямая крыльчатка										
	Количество			4		6	8							
	Расход воздуха Ном.		л/сек	15 131	22	697	30 263							
	Скорость		об/мин	715										
Уровень звуковой мощности	Охлаждение	Ном.	дБА	89	g	91	92							
Уровень звукового давления	Охлаждение	Ном.	дБА	72	7	75								
Рабочий	Сторона воды	Охлаждение Мин.~	Макс. °CDB			-8~20								
диапазон	Сторона воздуха Охлаждение Мин.~Макс. °CDE		Макс. °CDB	-18~43										
Хладагент	Тип			R-410A										
	Контуры	Количество		1		2								
Контур охлаждения	Заправка		кг	48	72 96									
Подсоединение труб	Вход/выход вод	ы из испарител	я (наруж.д.)	2,5"	2,5"									
Электропитание	Фаза / Частота /	Напряжение	Гц/В			3~/50/400								

- Все модели соответствуют положениям Европейской директивы безопасности оборудования, работающего под давлением (PED)
- Инверторный одновинтовой компрессор с плавным регулированием производительности
- > Оптимизирован для работы с хладагентом R-134a
- > 2 полностью независимых контура охлаждения
- Кожухотрубный испаритель DX один ход по хладагенту для сведения к минимуму потерь давления
- Возможность изменять производительность позволяет достигать требуемых параметров намного быстрее
- > Электронно-расширительный вентиль
- Имеется опция с частичной или полной рекуперацией теплоты
- > Коэффициент мощности свыше 0,95
- > Стандартный рабочий диапазон до -10°C

СИСТЕМА СТАНДАРТНОЙ УСТАНОВКИ

- > Двойная уставка
- > Размыкатели цепи вентиляторов с термореле
- > Контроль фаз
- > Стартер компрессора с инверторным управлением
- > Cоединение VICTAULIC для испарителя
- > Электрический нагреватель испарителя
- > Электронно-расширительный вентиль
- > Запорный вентиль на нагнетании
- > Запорный вентиль на всасывании
- Счетчик рабочего времени
- > Контактор для общей неисправности
- > Блокировка главного выключателя
- Регулирование скорости вентилятора (+тихая работа вентилятора)
- Датчик температуры атмосферного воздуха и сброс заданного значения

ОПЦИИ

- > Полная рекуперация теплоты один контур
- Уастичная рекуперация теплоты
- > Рассольная версия
- > Контроль минимального/максимального напряжения
- > Электросчетчик
- Ограничение тока
- > Изоляция испарителя 20мм
- > Защита теплообменника конденсатора
- Трубки конденсатора Cu-cu
- > Трубки конденсатора Cu-cu sn
- Антикоррозийное покрытие теплообменника
- > Реле протока испарителя
- > Манометры стороны высокого давления
- Комплект для транспортировки (контейнер)
- Резиновая антивибрационная опора
- > Пружинная антивибрационная опора
- > Один центробежный насос (низкий и высокий напор)
- > Два центробежных насоса (низкий и высокий напор)
- > Наружный бак с корпусом или без (500 и 1000л)
- > Сброс уставки, ограничение нагрузки и аварийный сигнал
- Предохранительный клапан на 2 значения давления с отводом
- > Манометры стороны низкого давления
- > Подвод воды испарителя справа
- > Комплект для перевозки
- Защитные панели теплообменника конденсатора

EWAD330,360BZ

Стандартная эффективность Стандартный/низкий уровень шума

Модель				330	360	400	420	460	490	520					
Холодопроизводительность	Ном.			328	357	394	422	458	486	513					
Регулирование	Способ			Бесступенчатое											
производительности	Минимальная пр	оизводительность	%		14										
Потребляемая мощность	Охлаждение	Ном.	кВт	121,1	137,1	148,4	160,4	169,4	182,7	195					
EER				2,71	2,60	2,65	2,63	2,70	2,66	2,63					
SEER				4,37	4,40	4,32	4,38	4,37	4,47	4,36					
Размеры	Блок	ВхШхГ	MM	2355x2	234x4381	2355x22	34x5281		2355x2234x6181						
Bec (SS)	Блок		КГ	4190		45	90	4990							
	Эксплуатационн	ный вес	КГ	4	440	48	340								
Bec (SL)	Блок		КГ	5140		4340	4740	4340	4740	5140					
	Эксплуатационн	ный вес	КГ	5	390	4590	4990	4590	4990	5390					
Водяной	Тип			Однопроходный кожухотрубный											
теплообменник	Объем воды		л	271		264	2	56 248							
	Ном. расход	Охлаждение	л/сек	15,7	17,1	18,8	20,2	21,9	23,3	24,6					
	Перепад давления	Охлаждение Теплообменник	кПа	40	37	44	40	38	43	47					
Воздушный теплообменник	Тип					Оребренный с и	нтегрированным	переохладителем	лем						
Вентилятор	Расход воздуха Ном.		л/сек	32 700		42 899	41 887	51 478	50 264	49 050					
	Скорость		об/мин	705											
Уровень звуковой мощности (SS)	Охлаждение	Ном.	дБА			103			104						
Уровень звуковой мощности (SL)	Охлаждение	Ном.	дБА		98		9	97	98						
Уровень звукового давления (SS)	Охлаждение	Ном.	дБА			83 84									
Уровень звукового давления (SL)	Охлаждение	Ном.	дБА		78	77 78									
Компрессор	Тип			Полугерметичный одновинтовой компрессор											
Рабочий	Сторона воды	Охлаждение Мин.~Макс.	°CDB				-9,5~15								
циапазон	Сторона воздуха	Охлаждение Мин.~Макс.	°CDB				-12~45								
Хладагент	Тип			R-134a											
	Заправка		кг		73	99	105	114	118	121					
	Контуры Количество			2											
Подсоединение труб	Вход/выход вод	ы из испарителя (н	аруж.д.)		168,3мм										
Электропитание	Фаза / Частота /	Напряжение	Гц/В		3~/50/400										

- Все модели соответствуют положениям Европейской директивы безопасности оборудования, работающего под давлением (PED)
- Инверторный одновинтовой компрессор с плавным регулированием производительности
- > Оптимизирован для работы с хладагентом R-134a
- > 2 полностью независимых контура охлаждения
- Кожухотрубный испаритель DX один ход по хладагенту для сведения к минимуму потерь давления
- Возможность изменять производительность позволяет достигать требуемых параметров намного быстрее
- > Электронно-расширительный вентиль
- Имеется опция с частичной или полной рекуперацией теплоты
- > Коэффициент мощности свыше 0,95
- > Стандартный рабочий диапазон до -10°C

СИСТЕМА СТАНДАРТНОЙ УСТАНОВКИ

- > Двойная уставка
- > Автоматические выключатели вентиляторов
- > Контроль фаз
- > Стартер компрессора с инверторным управлением
- > Cоединение VICTAULIC для испарителя
- > Тихий режим вентилятора
- > Электрический нагреватель испарителя
- > Электронно-расширительный вентиль
- > Запорный вентиль на нагнетании
- > Запорный вентиль на всасывании
- > Счетчик рабочего времени
- Контактор для общей неисправности
- > Блокировка главного выключателя
- Регулирование скорости вентилятора (+тихая работа вентилятора)
- Датчик температуры атмосферного воздуха и сброс заданного значения

ОПЦИИ

- > Полная рекуперация теплоты один контур
- Частичная рекуперация теплоты
- > Рассольная версия
- > Контроль минимального/максимального напряжения
- Электросчетчик
- > Ограничение тока
- > Изоляция испарителя 20мм
- > Защита теплообменника конденсатора
- > Трубки конденсатора Си-си
- > Трубки конденсатора Cu-cu sn
- > Антикоррозийное покрытие теплообменника
- > Реле протока испарителя
- Манометры стороны высокого давления
- Комплект для транспортировки (контейнер)
- Резиновая антивибрационная опора
- > Пружинная антивибрационная опора
- > Один центробежный насос (низкий и высокий напор)
- > Два центробежных насоса (низкий и высокий напор)
- > Наружный бак с корпусом или без (500 и 1000л)
- > Сброс уставки, ограничение нагрузки и аварийный сигнал
- Предохранительный клапан на 2 значения давления с отводом
- > Манометры стороны низкого давления
- > Подвод воды испарителя справа
- > Комплект для перевозки
- > Защитные панели теплообменника конденсатора

EWAD330,360BZ

Максимальная эффективность

Только охлаждение Стандартный/низкий/минимальный уровень шума

Модель				330	360	400	420	460	490	520					
Колодопроизводительность	Ном.		кВт	328	357	394	422	458	486	513					
Регулирование	Способ			Бесступенчатое											
іроизводительности	Минимальная пр	ооизводительность	%												
Тотребляемая мощность	ь Охлаждение Ном.		кВт	119	136	146	158	166	180	192					
EER				2,75	2,62	2,69	2,66	2,75	2,71	2,67					
SEER				4,55	4,59	4,53	4,60	4,59	4,75	4,58					
азмеры	Блок	ВхШхГ	MM	2355x22	34x4381	2355x22	234x5281		2355x2234x6181						
Bec (XS)	Блок		КГ	4190		45	590		4990						
	Эксплуатацион	ный вес	КГ	44	140	48	340		5240						
Bec (XL)	Блок		КГ	43	340	47	740		5140						
	Эксплуатационный вес		КГ	4590		49	990	5390							
Bec (XR)	Блок		КГ	43	190	47	790	5190							
	Эксплуатацион	ный вес	КГ	46	i40	50	040	5440							
Водяной	Тип			Однопроходный кожухотрубный											
еплообменник	Объем воды		Л	271	271 2		264 2		2	248					
	Ном. расход	Охлаждение	л/сек	15,7	17,1	18,8	20,2	21,9	23,3	24,6					
	Перепад давления	Охлаждение Теплообменник	кПа	40	37	44	40	38	43	47					
оздушный теплообменник	Тип					ереохладителем									
Вентилятор	Расход воздуха Ном.		л/сек	32 700		42 899 41 887		51 478	50 264	49 050					
	Скорость		об/мин	705											
оовень звуковой мощности (XS)	Охлаждение	Ном.	дБА			103		104							
оовень звуковой мощности (XL)	Охлаждение	Ном.	дБА			97	98								
оовень звуковой мощности (XR)	Охлаждение	Ном.	дБА			93	94								
оовень звукового давления (XS)	Охлаждение	Ном.	дБА			83		84							
оовень звукового давления (XL)	Охлаждение	Ном.	дБА			77		78							
ровень звукового давления (XR)	Охлаждение	Ном.	дБА			73	74								
омпрессор	Тип					Полугерметич	чный одновинтово	ой компрессор							
Рабочий	Сторона воды	Охлаждение Мин.~Макс.	°CDB				-9,5~15								
диапазон	Сторона воздуха Охлаждение Мин.~Макс. °CDB			-12~45											
ладагент	Тип			R-134a											
	Заправка		КГ	73 99 105 114 118											
	Контуры Количество			2											
Іодсоединение труб	Вход/выход вод	ы из испарителя (н	аруж.д.)	168,3мм											
Электропитание	Фаза / Частота /	Напряжение	Гц/В	3~/50/400											

Новая холодильная машина с одновинтовым компрессором и инверторным управлением Daikin особенно подходит для комфортабельных и производственных помещений, в которых колебание нагрузки в течение года имеет важное значение, а высокая эффективность просто необходима! Новая холодильная машина представляет собой огромную возможность для обновления или модернизации имеющегося оборудования, ее легко устанавливать и так же легко обслуживать.

Преимущества инверторной технологии очевидны!

ЭНЕРГОСБЕРЕЖЕНИЕ

- Используя модель EWAD-TZ, вы получите показатель ESEER равный 6, что значит энергоэффективность КЛАССА A с отличной эффективностью при частичной нагрузке.
 Это один из самых высоких показателей на рынке, при котором гарантируется экономия денежных средств.
- Вы сможете получить дальнейшее сбережение средств в связи с сокращением потребления энергии на 30% по сравнению с традиционной холодильной машиной без инверторного управления, это идеальное решение для модернизации проектов.

УРОВЕНЬ КОМФОРТА

- Система обладает бесконечными возможностями регулирования нагрузки без предварительных настроек
- Очень точная система регулирования температуры воды на выходе помогает обеспечить оптимальный комфорт и сберечь ваши деньги

БЫСТРАЯ ОКУПАЕМОСТЬ

> Зачем затягивать с возвратом капитала? Модель EWAD-TZ имеет 3х-годичную окупаемость (ROI), в то время как блок без инверторного управления требует на это вдвое больше времени

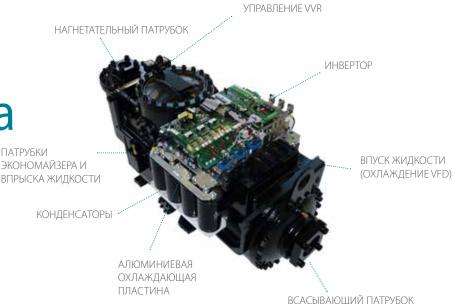
КОМПАКТНАЯ КОНСТРУКЦИЯ

> Компактная конструкция нашей модели EWAD-TZ обеспечивает достижение эквивалентной холодопроизводительности блока без инверторного управления, но с лучшей эффективностью и теми же габаритами, что позволяет оптимально использовать площадь эксплуатации

ATOGAY RAXNT

 Ничто так не нарушает наш комфорт, как шум оборудования. Но модель EWAD-TZ оснащена компрессором с переменной частотой вращения, обеспечивающим самый низкий уровень шума

ЗЕЛЕНОЕ СЕРДЦЕ


 Модель EWAD-TZ помогает вам уменьшить вредное воздействие оборудование на среду, сокращая потребление энергии без последствий для надежности и эксплуатационных характеристик оборудования

Новая

технология инвертора и компрессора

- ✓ Компрессор и инвертор полностью разработаны компанией Daikin
- ✓ Инвертор встроен в корпус компрессора
- ✓ Инвертор охлаждается хладегентом
- ✓ VVR = Переменная объемная производительность для оптимизированной эффективности
- ✓ Увеличенные патрубки всасывания и нагнетания для уменьшения падения давления хладагента
- ✓ Новые оптимизированные электродвигатели компрессора

- Одновинтовой компрессор с плавным регулированием производительности
- > Широкий рабочий диапазон (температура наружного воздуха от -18°С до 46°С)
- Все модели соответствуют положениям Европейской директивы безопасности оборудования, работающего под давлением (PED)
- > Оптимизирован для работы с хладагентом R-134a
- 2-3 полностью независимых контура охлаждения
- > Электронно-расширительный вентиль
- Кожухотрубный испаритель DX один ход по хладагенту для сведения к минимуму потерь давления
- Имеется опция с частичной или полной рекуперацией теплоты
- > Koнтроллер MicroTech III для эффективного управления и простого соединения с интерфейсами LonWorks, Bacnet, Ethernet TCP/IP или Modbus

СИСТЕМА СТАНДАРТНОЙ УСТАНОВКИ

- > Стартер Звезда-Треугольник (y d)
- > Двойная уставка
- > Контроль фаз
- > Coeдинение VICTAULIC для испарителя
- > Изоляция испарителя 20мм
- Электрический нагреватель испарителя
- Электронно-расширительный вентиль
- Запорный вентиль на нагнетании
- Датчик температуры атмосферного воздуха и сброс заданного значения
- > Счетчик рабочего времени
- > Контактор для общей неисправности
- > Сброс уставки, ограничение нагрузки и аварийный сигнал
- > Автоматические выключатели вентиляторов
- > Блокировка главного выключателя
- > Аварийный останов

ОПЦИИ

- > Полная рекуперация теплоты
- > Частичная рекуперация теплоты
- > Плавный старт
- > Рассольная версия
- > Тепловое реле компрессора
- > Контроль минимального/максимального напряжения
- Электросчетчик
- › Конденсаторы для компенсации коэффициента мощности
- > Ограничение тока
- > Соединение фланцем для испарителя
- > Устройство регулирования скорости вентиляторов
- Защита теплообменника конденсатора
- > Защита поверхности испарителя
- Трубки конденсатора Cu-cu
- > Трубки конденсатора Cu-cu sn
- > Антикоррозийное покрытие теплообменника
- Реле протока испарителя
- > Запорный вентиль на всасывании
- > Манометры стороны высокого давления
- > Комплект для транспортировки (контейнер)
- > Резиновая антивибрационная опора
- Пружинная антивибрационная опора
- > Один центробежный насос (3 разные модели)
- Два центробежных насоса (4 разные модели)
- Предохранительный клапан на 2 значения давления с отводом
- > Регулирование скорости вентилятора
- Бак сбора хладагента
- Подвод воды испарителя справа
- Реле заземления
- > Манометры стороны низкого давления
- Быстрый перезапуск
- > Комплект для перевозки
- Защитные панели теплообменника конденсатора
- > Обработка теплообменника Blygold

MicroTech III

EWAD-C-

Стандартная эффективность Стандартный/низкий уровень шума

Только	охла	жд	ени		Ст	анд	дар	ТН	ЫЙ/	′ни	3KI	ий χ	ypo	ове	НЬ	шу	′ма		
Модель						740	830	910	970	C11	C12	C13	H14	C15	C16	C17	C18	C19	C20
Холодопроизводительность	Ном. кВ			кВт	645	741	829	908	962	1059	1146	1315	1412	1532	1615	1706	1797	1870	1917
Регулирование	Способ										Бес	ступенча	тое						
производительности	Минимальная производительность %				13									7					
Потребляемая мощность	Охлаждение	Ном.		кВт	223	265	302	322	355	382	408	446	479	557	586	627	669	687	721
EER	· · · · · · · · · · · · · · · · · · ·				2,89	2,80	2,74	2,82	2,71	2,77	2,81	2,9	95	2,	75	2,72	2,69	2,72	2,66
ESEER						3,69	3,72	3,65	3,60	3,69	3,63	3,88	3,86	3,72	3,68	3,58	3,67	3,68	3,64
Размеры	Блок	ВхШхГ		мм		254	0x2285x6	5185		2540x2285x7085	2540x2285x7985	2540x22	85x8885	2540x2285x10185	2540	2540x2285x11 085		2540x2285x11 985	
Bec (SS)	ес (SS) Блок			КГ	5630	5740	5760	6280	6560	7010	7280	7900		10 320	10 710	10 770	11 240	11 600	
	Эксплуатационный вес			КГ	5910	5990	6010	6530	6810	7250	7520	82	80	10 730	11 110	11 260	12 110	12	480
Bec (SL)	Блок			КГ	5920	6030	6050	6570	6850	7300	7570	81	90	10 770	11 150	11 210	11 680	12	040
	Эксплуатационный вес			КГ	6200	6280	6300	6820	7100	7540	7810	8570		11 170	11 550	11 700	12 560	12 920	
Водяной	Тип				Однопроходный кожухотрубный														
теплообменник	Объем воды			Л	266			251			243 386		408 474		474	850			
	Ном. расход	Охлажде	ние	л/сек	30,9	35,5	39,7	43,5	46,1	50,8	55,0	62,9	67,6	73,4	77,4	81,8	86,0	89,5	91,7
	Перепад давления	Охлаждение	Теплообменник	кПа	47	54	53	62	69	64	74	54	58	62	68	75	36	39	40
Воздушный теплообменник	Тип								Ope	бренный	с интегр	ированн	ым пер	еохладит	елем				
Вентилятор	Расход воздуха	Расход воздуха Ном. л/сен				53 442	64 131			74 819 85 508 96 196			106 885 117 573			128 262		262	
	Скорость об/г			об/мин	900														
Уровень звуковой мощности (SS)	Охлаждение	Ном.		дБА		100		10	01	102			103			104			
Уровень звуковой мощности (SL)	Охлаждение	Ном.		дБА		96		98	97		9	8	8 99		100		101		01
Уровень звукового давления (SS)	Охлаждение	Ном.		дБА	79		80					8	1					82	
Уровень звукового давления (SL)	Охлаждение	Ном.		дБА		76						77						78	
Компрессор	Тип								/	Симмет	оичный с	дновинт	овой ко	мпрессо	р				
Рабочий	Сторона воды	Охлаждение	Мин.~Макс.	°CDB								-8~15							
диапазон	Сторона воздуха	Охлаждение	Мин.~Макс.	°CDB								-18~52							
Хладагент	Тип											R-134a							
	Контуры	Контуры Количество				2							3						
Контур охлаждения	Заправка			кг		128		146	144	162	178	19	96	260	26	61	275	30	05
Подсоединение труб	Вход/выход воды из испарителя (наруж.д.)				168,3мм 219,1мм 273мм														
Электропитание	Фаза / Частота / Напряжение Гц / В				3~/50/400														

- Низкий уровень шума
- Одновинтовой компрессор с плавным регулированием производительности
- Широкий рабочий диапазон (температура наружного воздуха от -18°С до 46°С)
- Все модели соответствуют положениям Европейской директивы безопасности оборудования, работающего под давлением (PED)
- Оптимизирован для работы с хладагентом R-134a
- 2-3 полностью независимых контура охлаждения
- Электронно-расширительный ве́нтиль
- Кожухотрубный испаритель DX один ход по хладагенту для сведения к минимуму потерь давления Имеется опция с частичной или полной рекуперацией
- Контроллер MicroTech III для эффективного управления и простого соединения с интерфейсами LonWorks, Bacnet, Ethernet TCP/IP или Modbus

СИСТЕМА СТАНДАРТНОЙ УСТАНОВКИ

- Стартер Звезда-Треугольник (y d)
- Двойная уставка
- Термо реле вентиляторов
- Контроль фаз
- Соединение VICTAULIC для испарителя
- Изоляция испарителя 20мм
- Электрический нагреватель испарителя
- Электронно-расширительный вентиль
- электронно-расширительный вентиль
 Запорный вентиль на нагнетании
 Датчик температуры атмосферного воздуха и сброс
 заданного значения
 Счетчик рабочего времени
 Контактор для общей неисправности

- Сброс уставки, ограничение нагрузки и аварийный сигнал
- Предохранительный клапан на 2 значения давления с отводом
- Автоматические выключатели вентиляторов
- Блокировка главного выключателя
- Аварийный останов
- Автоматические выключатели вентиляторов

ОПЦИИ

- . Полная рекуперация теплоты
- Частичная рекуперация теплоты
- Плавный старт
- Рассольная версия
- Реле тепловой защиты компрессора
- Контроль минимального/максимального напряжения
- Электросчетчик
- Конденсаторы для компенсации коэффициента мощности
- Ограничение тока
- Соединение фланцем для испарителя
- Speedtrol (устройство управления скоростью вентилятора - вкл/выкл - до -18°C)
- Защита теплообменника конденсатора
- Защита поверхности испарителя
- Трубки конденсатора Си-си
- Трубки конденсатора Cu-cu sn
- Антикоррозийное покрытие теплообменника Антикоррозииное покрытие теплоооместили Реле протока испарителя
 Запорный вентиль на всасывании
 Манометры стороны высокого давления
 Комплект для транспортировки (контейнер)
 Резиновая антивибрационная опора

- Пружинная антивибрационная опора
- Один центробежный насос (3 разные модели)
- Два центробежных насоса (4 разные модели) Автоматические выключатели компрессора
- Предохранительный клапан на
 - 2 значения давления с отводом
- Регулирование скорости вентилятора (+тихая работа вентилятора)
- Бак сбора хладагента Подвод воды испарителя справа Реле заземления
- Манометры стороны низкого давления
- Быстрый перезапуск
- Комплект для перевозки
- Защитные панели теплообменника конденсатора
- Обработка теплообменника Blygold

MicroTech III

Только охлаждение

Стандартная эффективность Пониженный уровень шума

Модель				620	720	790	890	920	C10	C11	C12	H14	C13	C14	C15	C16	C17	C18	C19
Холодопроизводительность	Ном.		кВт	617	712	786	872	918	1016	1107	1266	1316	1363	1465	1550	1616	1710	1791	1828
Регулирование	Способ										Бесступ	енчатое							
производительности	Минимальная пр	ооизводительнос	гь %					13								7			
Потребляемая мощность	Охлаждение	Ном.	кВт	226	276	317	334	373	398	422	461	500	522	582	609	654	706	722	762
EER				2,74	2,59	2,48	2,61	2,46	2,55	2,63	2,74	2,63	2,61	2,52	2,54	2,47	2,42	2,48	2,40
ESEER				3,91	3,78	3,81	3,	79	3,76	3,74	3,92	3,81	3,76	3,70	3,71	3,64	3,68	3,70	3,64
Размеры	Блок	ВхШхГ	мм		2540)x2285x	6185		2540x2285x7085	2540x2285x7985	2540x22	85x8885	2540x228	35x10 185	2540	x2285x1	1 085	2540x228	85x11 985
Bec	Блок		кг	5920	6030	6050	6570	6850	7300	7570	81	90	10 750	10 770	11 150	11 210	11 680	12	040
	Эксплуатационн	ый вес	КГ	6200	6280	6300	6820	7100	7540	7810	85	70	11	170	11 550	11 700	12 560	12	920
Водяной	Тип		·						C	Эднопро	ходный	кожухо	трубныі	й					
теплообменник	Объем воды		л	20	56		251		24	13	38	36	421	40	08	474		850	
	Ном. расход	Охлаждение	л/сек	29,5	34,1	37,6	41,8	44,0	48,7	53,1	60,6	63,0	65,2	70,2	74,2	77,4	81,8	85,6	87,5
	Перепад давления	Охлаждение Теплообмен	ик кПа	43	50	48	58	63	60	69	50	54	45	57	63	69	33	36	37
Воздушный теплообменник	Тип							0	ребренн	ый с инт	егриро	ванным	переохі	падител	ем				
Вентилятор	Расход воздуха	Ном.	л/сек		41 007		49	209	57 410	65 611	73 8	813	82 (014		90 216		98	417
	Скорость		об/мин								70	00							
Уровень звуковой мощности	Охлаждение	Ном.	дБА		92		9	3		9.	4			9	5			96	
Уровень звукового давления	Охлаждение	Ном.	дБА	71		72						73						74	
Компрессор	Тип								Асимм	етричнь	ый одно	винтово	й компр	eccop					
Рабочий	Сторона воды	Охлаждение Мин.~Ма	c. °CDB								-8~	·15							
диапазон	Сторона воздуха	Охлаждение Мин.~Ма	c. °CDB								-18	~52							
Хладагент	Тип		·								R-1	34a							
	Контуры	Количество						2								3			
Контур охлаждения	Заправка		КГ		128		146	144	162	178	19	96	26	50	20	61	275	30	05
Подсоединение труб	Вход/выход вод	ы из испарителя	наруж.д.)				168,3мм	ı					219,	1мм				273мм	
Электропитание	Фаза / Частота /	Напряжение	Гц/В								3~/50	0/400							

- > Высокая эффективность
- Одновинтовой компрессор с плавным регулированием производительности
- Широкий рабочий диапазон (температура наружного воздуха от -18°С до 50°С)
- Все модели соответствуют положениям Европейской директивы безопасности оборудования, работающего под давлением (PED)
- Оптимизирован для работы с хладагентом R-134a
- > 2-3 полностью независимых контура охлаждения
- > Электронно-расширительный вентиль
- Кожухотрубный испаритель DX один ход по хладагенту для сведения к минимуму потерь давления
- Имеется опция с частичной или полной рекуперацией теплоты
- > Kонтроллер MicroTech III для эффективного управления и простого соединения с интерфейсами LonWorks, Bacnet, Ethernet TCP/IP или Modbus

СИСТЕМА СТАНДАРТНОЙ УСТАНОВКИ

- > Стартер Звезда-Треугольник (y d)
- > Двойная уставка
- > Термические реле вентиляторов
- > Контроль фаз
- > Coeдинение VICTAULIC для испарителя
- > Изоляция испарителя 20мм
- > Электрический нагреватель испарителя
- > Электронно-расширительный вентиль
- > Запорный вентиль на нагнетании
- Датчик температуры атмосферного воздуха и сброс заданного значения
- > Счетчик рабочего времени
- > Контактор для общей неисправности
- > Сброс уставки, ограничение нагрузки и аварийный сигнал
- Автоматические выключатели вентиляторов
- > Блокировка главного выключателя
- Аварийный останов

ОПЦИИ

- > Полная рекуперация теплоты
- > Частичная рекуперация теплоты
- > Плавный старт
- Рассольная версия
- Реле тепловой защиты компрессора
- > Контроль минимального/максимального напряжения
- > Электросчетчик
- › Конденсаторы для компенсации коэффициента мощности
- Ограничение тока
- > Соединение фланцем для испарителя
- > Устройство регулирования скорости вентиляторов
- > Защита теплообменника конденсатора
- > Защита поверхности испарителя
- > Трубки конденсатора Сu-cu
- > Трубки конденсатора Cu-cu sn
- Антикоррозийное покрытие теплообменника
- > Реле протока испарителя
- > Запорный вентиль на всасывании
- > Манометры стороны высокого давления
- > Комплект для транспортировки (контейнер)
- > Резиновая антивибрационная опора
- > Пружинная антивибрационная опора
- Один центробежный насос (3 разные модели)
- > Два центробежных насоса (4 разные модели)
- > Автоматические выключатели компрессора
- Предохранительный клапан на
 - 2 значения давления с отводом
- Регулирование скорости вентилятора (тихая работа вентилятора)
- Бак сбора хладагента
- > Подвод воды испарителя справа
- > Реле заземления
- > Быстрый перезапуск
- > Комплект для перевозки
- Манометры стороны низкого давленияЗащитные панели теплообменника конденсатора
- Обработка теплообменника Blygold

MicroTech III

винтовой

Только охлаждение

Максимальная эффективность Стандартный/низкий уровень шума

Модель					760	830	890	990	C10	C11	C12	C13	H14	H15	C16	C17	C18	C19	C20	C21	C22
Холодопроизводительность	Ном.		1	кВт	752	827	885	997	1069	1192	1276	1343	1408	1517	1590	1678	1760	1849	1896	1948	2002
Регулирование	Способ											Бесс	тупенч	атое							
производительности	Минимальная пр	ооизводите	ельность (%					1	3								7			
Потребляемая мощность	Охлаждение	Ном.	1	кВт	237	256	282	311	343	367	404	416	451	483	510	541	569	598	620	648	677
EER					3,17	3,22	3,14	3,20	3,12	3,25	3,15	3,23	3,13	3,14	3,12	3,10	3,0)9	3,06	3,01	2,96
ESEER					3,77	3,91	3,81	3,91	3,83	3,98	3,86	4,05	4,04	4,05	3,97	3,94	3,92	3,90	3,98	3,89	3,86
Размеры	Блок	ВхШхГ	1	мм	2540x 2285x6185	2540x22	185x7085	2540x2	285x7985		2540)x2285x	9785		2540x 2285x11 985	2540x 2285x12 885	2540x 2285x13 785	25	540x228	5x14 68	35
Bec (XS)	Блок		1	кг	5990	6340	6360	7190	7470	8220	8240		8900		11 570	11 900	12 260		12 (500	
	Эксплуатационн	ный вес	1	кг	6240	6580	6600	7600	7870	8610	8630		9890		12 430	12 760	13 140		13 4	170	
Bec (XL)	Блок		1	кг	6280	6630	6650	7480	7760	8510	8530		9190		12 010	12 350	12 700		13 (040	
	Эксплуатационн	ый вес	1	кг	6520	6870	6890	7880	8160	8900	8920		10 180		12 870	13 200	13 580		13 9	910	
Водяной	Тип										Одно	проход	ный кох	кухотру	/бный						
теплообменник	Объем воды		J	П	251	24	43	4	03	38	36		979		85	0	871		85	0	
	Ном. расход	Охлажден	ние ј	п/сек	36,1	39,6	42,4	47,8	51,2	57,1	61,1	64,4	67,5	72,8	76,1	80,4	84,4	88,6	90,7	93,2	95,8
	Перепад давления	Охлаждение	Теплообменник в	кПа	81	57	64	61	69	45	51	68	77	84	62	6	8	74	39	41	43
Воздушный теплообменник	Тип									Оребре	енный с	интегр	ировані	ным пер	реохлад	ителем					
Вентилятор	Расход воздуха	Ном.	J	л/сек	64 131	74	819	85	508			106 885			128 262	138 950	149 639		160	327	
	Скорость			об/мин									900								
Уровень звуковой мощности (XS)	Охлаждение	Ном.		дБА	100		101		10)2			103					10)4		
Уровень звуковой мощности (XL)	Охлаждение	Ном.		дБА		97		9	8			99						100			
Уровень звукового давления (XS)	Охлаждение	Ном.		дБА		8	0		81			80						81			
Уровень звукового давления (XL)	Охлаждение	Ном.		дБА	76						77								78		
Компрессор	Тип									Аси	мметри	чный о	дновин	товой к	омпрес	cop					
Рабочий	Сторона воды	Охлаждение	Мин.~Макс.	°CDB									-8~15								
диапазон	Сторона воздуха	Охлаждение	Мин.~Макс.	°CDB									-18~52								
Хладагент	Тип												R-134a								
	Контуры	Количест	во						:	2								3			
Контур охлаждения	Заправка		ı	кг	146	10	62	1	82	2	14	225	24	18	297	312	328		34	13	
Подсоединение труб	Вход/выход вод	ы из испар	оителя (нар	руж.д.)		168,3мл	4		219,	1мм						273	мм				
Электропитание	Фаза / Частота /	Напряжен	ие Г	Гц/В								3	~/50/40	0							

- Высокая эффективность, низкий уровень шума
- Одновинтовой компрессор с плавным регулированием производительности
- Широкий рабочий диапазон (температура наружного воздуха от -18°С до 50°С)
- Все модели соответствуют положениям Европейской директивы безопасности оборудования, работающего под давлением (PED)
- Оптимизирован для работы с хладагентом R-134a
- 2-3 полностью независимых контура охлаждения
- Электронно-расширительный вентиль
- Кожухотрубный испаритель DX один ход по хладагенту для сведения к минимуму потерь давления
- Имеется опция с частичной или полной рекуперацией теплоты
- Контроллер MicroTech III для эффективного управления и простого соединения с интерфейсами LonWorks, Bacnet, Ethernet TCP/IP или Modbus

СИСТЕМА СТАНДАРТНОЙ УСТАНОВКИ

- Стартер Звезда-Треугольник (y d)
- Двойная уставка
- Термические реле вентиляторов
- Контроль фаз
- Соединение VICTAULIC для испарителя Изоляция испарителя 20мм
- Электрический нагреватель испарителя
- Электронно-расширительный вентиль
- Запорный вентиль на нагнетании
- Датчик температуры атмосферного воздуха и сброс заданного значения
- Счетчик рабочего времени
- Контактор для общей неисправности
- Сброс уставки, ограничение нагрузки и аварийный сигнал на внешнем устройстве
- Автоматические выключатели вентиляторов
- Блокировка главного выключателя
- Аварийный останов

ОПЦИИ

- Полная рекуперация теплоты
- Частичная рекуперация теплоты
- Плавный старт
- Рассольная версия
- Реле тепловой защиты компрессора
- Контроль минимального/максимального напряжения
- Электросчетчик
- Конденсаторы для компенсации коэффициента мощности
- Ограничение тока
- Соединение фланцем для испарителя
- Speedtrol (устройство управления скоростью вентилятора - вкл/выкл - до -18°C)
- Защита теплообменника конденсатора Защита поверхности испарителя
- Трубки конденсатора Си-си
- Трубки конденсатора Cu-cu sn
- Антикоррозийное покрытие теплообменника
- Реле протока испарителя

- Запорный вентиль на всасывании Манометры стороны высокого давления Комплект для транспортировки (контейнер)
- Резиновая антивибрационная опора
- Пружинная антивибрационная опора
- Один центробежный насос (3 разные модели)
- Два центробежных насоса (4 разные модели)
- Автоматические выключатели компрессора
- Предохранительный клапан на 2 значения давления с отводом
- Регулирование скорости вентилятора (+тихая работа вентилятора)
- Бак сбора хладагента
- Подвод воды испарителя справа
- Реле заземления
- Манометры стороны низкого давления
- Быстрый перезапуск
- Комплект для перевозки
- Защитные панели для теплообменника конденсатора
- Обработка теплообменника Blygold

MicroTech III

Только охлаждение

Максимальная эффективность Пониженный уровень шума

Модель					740	810	870	970	C10	C11	C12	C13	H14	H15	C16	C17	C18	C19	C20	C21	C22
Холодопроизводительность	Ном.			кВт	732	808	862	970	1036	1164	1243	1297	1361	1461	1544	1632	1715	1805	1849	1897	1947
Регулирование	Способ											Бесс	тупенч	этое							
производительности	Минимальная пр	ооизводи	гельность	%					1	3								7			
Потребляемая мощность	Охлаждение	Ном.		кВт	238	257	285	313	348	369	409	420	461	498	518	548	574	604	629	663	695
EER					3,07	3,15	3,03	3,10	2,98	3,16	3,04	3,09	2,95	2,93	2,9	98	2,9	99	2,94	2,86	2,80
ESEER					4,00	4,14	4,01	4,12	4,01	4,21	4,07	4,	10	4,12	4,06	3,99	4,00	3,97	4,05	3,96	3,93
Размеры	Блок	ВхШхГ		мм	2540x 2285x6185	2540x22	85x7085	2540x22	85x7985		2540)x2285x	9785		2540x 2285x11 985	2540x 2285x12885	2540x 2285x13 785	2	540x228	35x14 68	85
Bec	Блок			кг	6280	6630	6650	7480	7760	8510	8530		9190		12 010	12 350	12 700		13 (040	
	Эксплуатационн	ный вес		кг	6520	6870	6890	7880	8160	8900	8920		10 180		12 870	13 200	13 580		13 9	910	
Водяной	Тип										Одно	проход	ный кох	кухотру	бный						
теплообменник	Объем воды			л	251	24	43	40)3	38	36		979		85	50	871		85	50	
	Ном. расход	Охлажде	ение	л/сек	35,1	38,7	41,3	46,5	49,7	55,7	59,5	62,1	65,2	70,0	74,0	78,2	82,2	86,5	88,5	90,7	93,1
	Перепад давления	Охлаждение	Теплообменник	кПа	77	54	61	58	65	43	49	64	73	79	59	6	5	71	37	39	41
Воздушный теплообменник	Тип									Оребре	енный с	интегр	ировані	ным пер	реохлад	цителем	1				
Вентилятор	Расход воздуха	Ном.		л/сек	49 209	57	410	65	611			82 014			98 417	106 619	114 820		123	021	
	Скорость			об/мин									700								
Уровень звуковой мощности	Охлаждение	Ном.		дБА		92			94				95				9	6		9	97
Уровень звукового давления	Охлаждение	Ном.		дБА		7	2		73		72					73				7	74
Компрессор	Тип									Аси	імметри	ічный о	дновин	товой к	омпрес	сор					
Рабочий	Сторона воды	Охлаждение	Мин.~Макс.	°CDB									-8~15								
диапазон	Сторона воздуха	Охлаждение	Мин.~Макс.	°CDB									-18~52								
Хладагент	Тип												R-134a								
	Контуры	Количес	тво							2								3			
Контур охлаждения	Заправка			кг	146	16	52	18	32	2	14	225	24	18	297	312	328		34	13	
Подсоединение труб	Вход/выход вод	ы из испа	рителя (на	аруж.д.)		168,3ми	1		219,	1мм						273	Вмм				
Электропитание	Фаза / Частота /	Напряже	ние	Гц/В								3	~/50/40	0							

- Высокая эффективность премиум версия
- Одновинтовой компрессор с плавным регулированием производительности
- Широкий рабочий диапазон (температура наружного воздуха от -18°С до 52°С)
- Все модели соответствуют положениям Европейской директивы безопасности оборудования, работающего под давлением (PED)
- Оптимизирован для работы с хладагентом R-134a
- 2 полностью независимых контура охлаждения
- Электронно-расширительный вентиль
- Кожухотрубный испаритель DX один ход по хладагенту для сведения к минимуму потерь давления
- Имеется опция с частичной или полной рекуперацией теплоты
- Контроллер MicroTech III для эффективного управления и простого соединения с интерфейсами LonWorks, Bacnet, Ethernet TCP/IP или Modbus

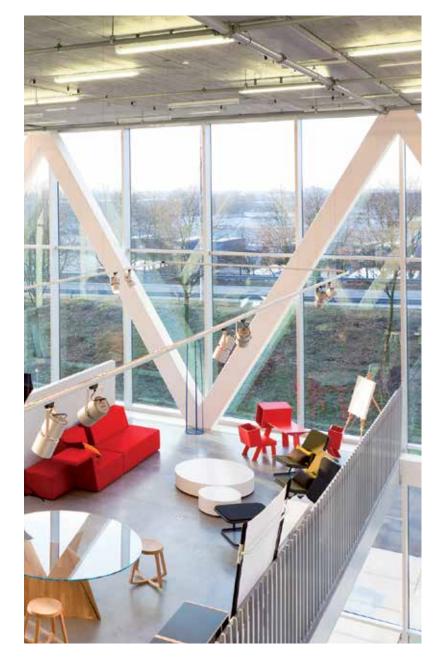
СИСТЕМА СТАНДАРТНОЙ УСТАНОВКИ

- Стартер Звезда-Треугольник (y d)
- Двойная уставка
- Термические реле вентиляторов
- Контроль фаз
- Соединение VICTAULIC для испарителя Изоляция испарителя 20мм

- Электрический нагреватель испарителя Электронно-расширительный вентиль
- Запорный вентиль на нагнетании
- Датчик температуры атмосферного воздуха и сброс заданного значения
- Счетчик рабочего времени
- Контактор для общей неисправности
- Сброс уставки, ограничение нагрузки и аварийный сигнал на внешнем устройстве
- Блокировка главного выключателя
- Аварийный останов

ОПЦИИ

- Полная рекуперация теплоты
- Частичная рекуперация теплоты
- Плавный старт
- Рассольная версия
- Реле тепловой защиты компрессора
- Контроль минимального/максимального напряжения
- Электросчетчик
- Конденсаторы для компенсации коэффициента мощности
- Ограничение тока
- Соединение фланцем для испарителя
- Speedtrol (устройство управления скоростью вентилятора - вкл/выкл - до -18°C)
- Защита теплообменника конденсатора
- Защита поверхности испарителя
- Трубки конденсатора Си-си
- Трубки конденсатора Cu-cu sn
- Антикоррозийное покрытие теплообменника
- Реле протока испарителя
- Запорный вентиль на всасывании
- Манометры стороны высокого давления
- Комплект для транспортировки (контейнер) Резиновая антивибрационная опора
- Пружинная антивибрационная опора
- Один центробежный насос (3 разные модели)
- Два центробежных насоса (4 разные модели)
- Регулирование скорости вентилятора (+тихая работа вентилятора)
- Автоматические выключатели компрессора
- Регулирование скорости вентилятора (+тихая работа вентилятора)
- Предохранительный клапан на 2 значения давления с отводом
- Бак сбора хладагента
- Подвод воды испарителя справа
- Реле заземления
- Манометры стороны низкого давления
- Комплект для перевозки
- Защитные панели для теплообменника конденсатора
- Обработка теплообменника Blygold



MicroTech III

Только охлаждение

Эффективность уровня премиум Стандартный/низкий уровень шума

Модель					820	890	980	C11	C12	C13	C14	C15	C16
Холодопроизводительность	Ном.			кВт	818	886	973	1070	1153	1274	1384	1467	1553
Регулирование	Способ							Б	есступенчат	oe			
производительности	Минимальная пр	роизводи	тельность	%					13				
Потребляемая мощность	Охлаждение	Ном.		кВт	229	253	276	306	335	368	402	431	461
EER					3,57	3,51	3,52	3,49	3,44	3,46	3,44	3,40	3,37
ESEER					4,22	4,24	4,28	4,29	4,14	4,22	4,08	4,07	4,02
Размеры	Блок	ВхШхГ		мм	2	2540x2285x888	35	2540x22	85x9785	2540x2285x11 085	2.	540x2285x11 9	85
Bec (PS)	Блок			кг	75	30	7660	8290	8550	9390		9730	
	Эксплуатационн	ный вес		кг	81	30	8700	9330	9590	10 380		10 720	
Bec (PL)	Блок			кг	78	320	7950	8580	8840	10 380		10 720	
	Эксплуатационн	ный вес		кг	84	120	8990	9620	9880	10 670		11 010	
Водяной	Тип							Однопро	кодный кожу	хотрубный			
геплообменник	Объем воды			л	5	99	1043	10	27	995		979	
	Ном. расход	Охлажде	ение	л/сек	39,2	42,5	46,5	51,2	55,2	61,0	66,3	70,3	74,5
	Перепад давления	Охлаждение	Теплообменник	кПа	58	67	31	61	70	60	70	81	88
Воздушный теплообменник	Тип						Ope	ренный с инт	егрированны	ым переохладите	елем		
Вентилятор	Расход воздуха	Ном.		л/сек		96 196		106	885	117 573		128 262	
	Скорость			об/мин					900				
Уровень звуковой мощности (PS)	Охлаждение	Ном.		дБА		101		10	02		103		104
√ровень звуковой мощности (PL)	Охлаждение	Ном.		дБА		98		99	100	99		100	
Уровень звукового давления (PS)	Охлаждение	Ном.		дБА		8	30		81	80		81	
/ровень звукового давления (PL)	Охлаждение	Ном.		дБА				77				7	'8
Компрессор	Тип							симметричны	ій одновинто	вой компрессор)		
Рабочий	Сторона воды	Охлаждение	Мин.~Макс.	°CDB					-8~15				
диапазон	Сторона воздуха	Охлаждение	Мин.~Макс.	°CDB					-18~52				
Хладагент	Тип								R-134a				
	Заправка			кг	204	202	204	22	20	252		254	
	Контуры	Количес	тво						2				
Подсоединение труб	Вход/выход вод	ы из испа	рителя (на	аруж.д.)	219	,1мм				273мм			
Электропитание	Фаза / Частота /	Напряже	ние	Гц/В					3~/50/400				

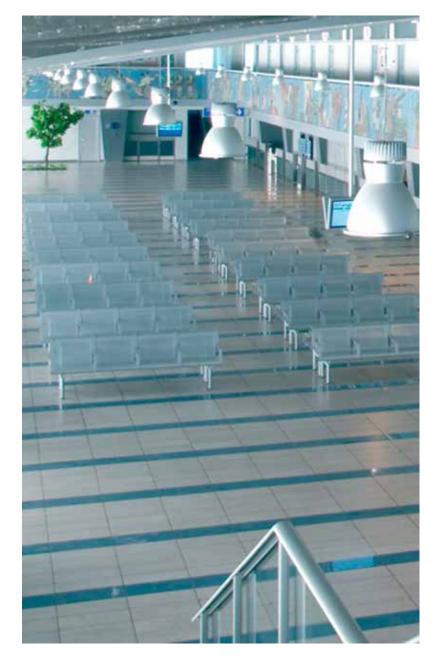
- Высокая эффективность, низкий уровень шума
- Одновинтовой компрессор с плавным регулированием производительности
- <u>Широкий</u> рабочий диапазон (температура наружного воздуха от -18°C до 52°C)
- Все модели соответствуют положениям Европейской директивы безопасности оборудования, работающего под давлением (PED)
- Оптимизирован для работы с хладагентом R-134a
- 2 полностью независимых контура охлаждения
- Электронно-расширительный вентиль
- Кожухотрубный испаритель DX один ход по хладагенту для сведения к минимуму потерь давления
- Имеется опция с частичной или полной рекуперацией теплоты
- Контроллер MicroTech III для эффективного управления и простого соединения с интерфейсами LonWorks, Bacnet, Ethernet TCP/IP или Modbus

СИСТЕМА СТАНДАРТНОЙ УСТАНОВКИ

- Стартер Звезда-Треугольник (y d)
- Двойная уставка
- Контроль фаз
- Соединение VICTAULIC для испарителя
- Изоляция испарителя 20мм
- Электрический нагреватель испарителя
- Электронно-расширительный вентиль
- Запорный вентиль на нагнетании
- Датчик температуры атмосферного воздуха и сброс заданного значения
- Счетчик рабочего времени
- Контактор для общей неисправности
- Сброс уставки, ограничение нагрузки и аварийный сигнал
- Автоматические выключатели вентиляторов
- Блокировка главного выключателя
- Аварийный останов

ОПЦИИ

- Полная рекуперация теплоты
- Частичная рекуперация теплоты
- Плавный старт
- Рассольная версия
- Реле тепловой защиты компрессора
- Контроль минимального/максимального напряжения
- Электросчетчик
- Конденсаторы для компенсации коэффициента мощности
- Ограничение тока
- Соединение фланцем для испарителя Speedtrol (устройство управления скоростью вентилятора - вкл/выкл - до -18°C)
- Защита теплообменника конденсатора
- защита поверхности испарителя Трубки конденсатора Cu-cu
- Трубки конденсатора Cu-cu sn
- Антикоррозийное покрытие теплообменника
- Реле протока испарителя
- Запорный вентиль на всасывании
- Манометры стороны высокого давления
- Комплект для транспортировки (контейнер)
- Резиновая антивибрационная опора
- Пружинная антивибрационная опора
- Один центробежный насос (3 разные модели)
- Два центробежных насоса (4 разные модели)
- Автоматические выключатели компрессора Предохранительный клапан на
- 2 значения давления с отводом
- Регулирование скорости вентилятора (+тихая работа вентилятора)
- Бак сбора хладагента
- Подвод воды испарителя справа
- Реле заземления
- Манометры стороны низкого давления
- Комплект для перевозки
- Быстрый перезапуск
- Защитные панели теплообменника конденсатора
- Обработка теплообменника Blygold



MicroTech III

EWAD-C-

Эффективность уровня премиум Пониженный уровень шума

Только охлаждение

Модель					810	880	960	C10	C11	C13	C14	C15	C16
Холодопроизводительность	Ном.		кВ	т	806	871	954	1049	1127	1246	1353	1432	1513
Регулирование	Способ							Е	есступенчат	oe			
производительности	Минимальная пр	оизводите.	льность %						13				
Потребляемая мощность	Охлаждение	Ном.	кВ	Τ	222	248	275	303	335	369	402	432	465
EER					3,63	3,51	3,47	3,46	3,36	3,38	3,36	3,32	3,26
ESEER					4,39	4,33	4,40	4,35	4,24	4,30	4,26	4,21	4,14
Размеры	Блок	ВхШхГ	MM	и	2	540x2285x888	35	2540x22	85x9785	2540x2285x11 085	2	540x2285x11 98	35
Bec	Блок		КГ		78	20	7950	8580	8840	10 380		10 720	
	Эксплуатационн	ый вес	КГ		84	20	8990	9620	9880	10 670		11 010	
Водяной	Тип							Однопро	одный кожу	хотрубный			
теплообменник	Объем воды		л		59	99	1043	10	27	995		979	
	Ном. расход	Охлажден	ие л/с	сек	38,6	41,7	45,6	50,2	54,0	59,7	64,8	68,7	72,6
	Перепад давления	Охлаждение Т	еплообменник кП	la	56	65	30	59	67	58	67	77	84
Воздушный теплообменник	Тип						Ope	ренный с инт	егрированнь	ім переохладите	елем		
Вентилятор	Расход воздуха	Ном.	л/с	сек		73 813		82	014	90 216		98 417	
	Скорость		об	/мин					700				
Уровень звуковой мощности	Охлаждение	Ном.	дБ	iA		9	93			94		9	5
Уровень звукового давления	Охлаждение	Ном.	дБ	iA		71				72			73
Компрессор	Тип						F	Симметричны	й одновинто	вой компрессор)		
Рабочий	Сторона воды	Охлаждение Л	Иин.∼Макс. Р°С[DB					-8~15				
диапазон	Сторона воздуха	Охлаждение Л	Иин.∼Макс. Р°С[DB					-18~52				
Хладагент	Тип								R-134a				
	Контуры	Количеств	30						2				
Контур охлаждения	Заправка		КГ		204	202	204	22	20	252		254	
Подсоединение труб	Вход/выход вод	ы из испарі	ителя (нару	ж.д.)	219,	1мм				273мм			
Электропитание	Фаза / Частота /	Напряжени	ие Гц	/ B					3~/50/400				

- > Широкий диапазон производительностей
- Низкий пусковой ток и оптимальный коэффициент мощности
- > Широкий диапазон режимов работы
- Контроллер MicroTech III для эффективного управления и простого соединения с интерфейсами LonWorks, Bacnet,
- > Ethernet TCP/IP или Modbus
- > Одновинтовой компрессор
- > Высокие характеристики в режиме частичной нагрузки

СИСТЕМА СТАНДАРТНОЙ УСТАНОВКИ

- > Двойная уставка
- > Реле тепловой защиты компрессора
- > Контроль фаз
- > Cоединение VICTAULIC для испарителя
- > Изоляция испарителя 20мм
- > Электрический нагреватель испарителя
- > Электронно-расширительный вентиль
- > Запорный вентиль на нагнетании
- Датчик температуры атмосферного воздуха и сброс заданного значения
- > Счетчик рабочего времени
- > Контактор для общей неисправности
- Сброс уставки, ограничение нагрузки и аварийный сигнал на внешнем устройстве
- > Автоматические выключатели вентиляторов
- > Блокировка главного выключателя
- > Аварийный останов
- > Стартер компрессора с инверторным управлением

ОПЦИИ

- > Полная рекуперация теплоты
- Участичная рекуперация теплоты
- Рассольная версия
- > Контроль минимального/максимального напряжения
- > Электросчетчик
- > Ограничение тока
- > Соединение фланцем для испарителя
- > Устройство регулирования скорости вентиляторов
- Speedtrol (устройство управления скоростью вентилятора ВКЛ/ВЫКЛ до -18°С)
- > Защита теплообменника конденсатора
- > Защита поверхности испарителя
- Трубки конденсатора Cu-cu
- > Трубки конденсатора Cu-cu sn
- > Антикоррозийное покрытие теплообменника
- > Реле протока испарителя
- > Запорный вентиль на всасывании
- > Манометры стороны высокого давления
- Комплект для транспортировки (контейнер)
- > Резиновая антивибрационная опора
- > Пружинная антивибрационная опора
- > Один центробежный насос (3 разных модели)
- > Два центробежных насоса (4 разные модели)
- Предохранительный клапан на 2 значения давления с отводом
- > Автоматические выключатели компрессора
- Регулирование скорости вентилятора (+тихая работа вентилятора)
- Бак сбора хладагента
- > Подвод воды испарителя справа
- > Реле заземления
- Манометры стороны низкого давления
- > Быстрый перезапуск
- > Комплект для транспортировки (паллета)
- > Защитные панели теплообменника конденсатора
- > Обработка теплообменника Blygold

MicroTech III

EWAD670-C18CZXS/XL

Максимальная эффективность Стандартный/низкий уровень шума

Только охлаждение Модель 740 830 C10 C11 C12 C13 C14 C15 C16 C17 670 Холодопроизводительность Ном. кВт 668 734 828 902 1033 1090 1232 1303 1444 1538 1616 1701 1795 Способ производительности Минимальная производительность | % 20 13 Потребляемая мощность Охлаждение 239 343 619 269 596 EER 2,68 2,96 3,01 2,87 2,92 2,93 2,85 2,90 3,05 3,07 2,86 ESEER 4,64 4,72 4,89 5,22 4,91 4,51 4,73 4,83 4,72 4,57 ВхШхГ Блок 2540x2285x6725 2540x2285x7625 2540x2285x8525 2540x2285x10 325 2540x2285x12 525 2540x2285x14325 Размерь мм 2540x2285x11 625 2540x2285x13 425 Bec (XS) Блок кг 5880 6000 6620 6870 7440 8570 8970 9600 9940 11 370 12 190 12 920 Эксплуатационный вес кг 6140 6250 6860 7110 7880 8960 9360 9980 10 320 12 220 13 040 13 790 Bec (XL) Блок кг 6170 6280 6900 7150 7720 8850 9250 9880 10 220 11 790 12 610 13 340 Эксплуатационный вес 6430 6530 7140 7390 8160 9240 9640 10 260 10 600 12 640 13 460 14 210 Водяной Тип Однопроходный кожухотрубный теплообменник Объем воды 263 248 241 441 383 871 Ном. расход Охлаждение л/сек 32,0 35,2 39,7 43,00 49,5 69,2 77,4 86,0 63 70 47 52 62 Перепад давления Охлаждение Тепло Воздушный теплообменник Тип Оребренный с интегрированным переохладителем Расход воздуха Ном. л/сек 54 188 65 025 86 700 108 376 119 213 | 130 051 | 129 454 | 140 143 | 151 129 Вентилятор 900 Двигатель вентилятора Скорость Охлаждение Ном об/мин 102 102,5 104 Уровень звуковой мощности (XS) Охлаждение Ном. лБА 103 106 Уровень звуковой мошности (XL) Охлаждение Ном дБА 99 100 101 103 Уровень звукового давления (XS) Охлаждение Ном дБА 81 81,1 81 83 Уровень звукового давления (XL) Охлаждение Ном дБА 78 80 Компрессор Тип Асимметричный одновинтовой компрессор Рабочий Сторона воды Охлаждение Мин.~Макс. °CDB -8~15 диапазон Сторона воздуха Охлаждение Мин.~Макс. °CDB -18~50 Хладагент R-134a Контуры Количество 343 Контур охлаждения Заправка 200 Подсоединение труб Вход/выход воды из испарителя (наруж.д.) 219,1мм 273мм 168,3мм 3~/50/400 Электропитание Фаза / Частота / Напряжение Гц/В

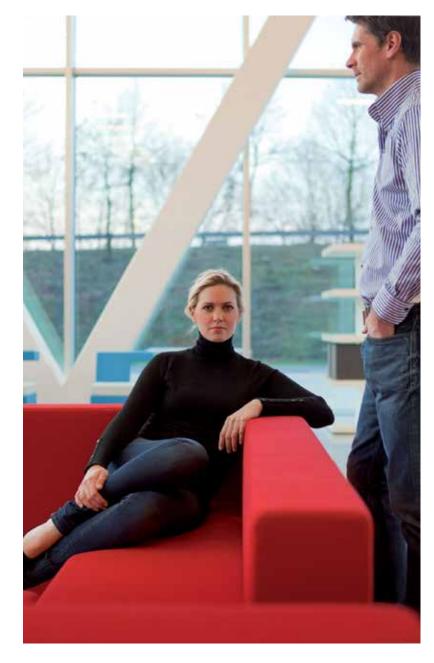
- > Широкий диапазон производительностей
- Низкий пусковой ток и оптимальный коэффициент мощности
- > Широкий диапазон режимов работы
- > Koнтроллер MicroTech III для эффективного управления
- > и простого соединения с интерфейсами LonWorks, Bacnet, Ethernet TCP/IP или Modbus
- > Одновинтовой компрессор
- > Высокие характеристики в режиме частичной нагрузки

СИСТЕМА СТАНДАРТНОЙ УСТАНОВКИ

- > Двойная уставка
- > Реле тепловой защиты компрессора
- > Контроль фаз
- > Соединение VICTAULIC для испарителя
- > Изоляция испарителя 20мм
- > Электрический нагреватель испарителя
- > Электронно-расширительный вентиль
- > Запорный вентиль на нагнетании
- > Запорный вентиль на всасывании
- Датчик температуры атмосферного воздуха и сброс заданного значения
- > Счетчик рабочего времени
- > Контактор для общей неисправности
- > Сброс уставки, ограничение нагрузки и аварийный сигнал
- > Автоматические выключатели вентиляторов
- > Блокировка главного выключателя
- > Аварийный останов
- > Стартер компрессора с инверторным управлением

ОПЦИИ

- > Полная рекуперация теплоты
- > Частичная рекуперация теплоты
- > Рассольная версия (до -8°C)
- > Контроль минимального/максимального напряжения
- > Электросчетчик
- > Ограничение тока
- > Соединение фланцем для испарителя
- > Тихий режим вентилятора
- > Устройство регулирования скорости вентиляторов
- Speedtrol (устройство управления скоростью вентилятора ВКЛ/ВЫКЛ до -18°C)
- > Защита теплообменника конденсатора
- > Защита поверхности испарителя
- › Трубки конденсатора Cu-cu
- > Трубки конденсатора Cu-cu sn
- > Антикоррозийное покрытие теплообменника
- Реле протока испарителя
- > Манометры стороны высокого давления
- > Комплект для трансортировки (контейнер)
- > Резиновая антивибрационная опора
- Пружинная антивибрационная опора
- > Один центробежный насос (3 разных модели)
- > Два центробежных насоса (4 разные модели)
- Предохранительный клапан на 2 значения давления с отводом
- > Автоматические выключатели компрессора
- Регулирование скорости вентилятора (+тихая работа вентилятора)
- > Бак сбора хладагента
- > Подвод воды испарителя справа
- > Реле заземления
- > Манометры стороны низкого давления
- Быстрый перезапуск
- > Комплект для перевозки
- Защитные панели теплообменника конденсатора
- > Обработка теплообменника Blygold


MicroTech III

EWAD640-C17CZXR

Только охлаждение Пониженный уровень шума

C13 Модель 640 700 790 850 980 C10 C11 C12 C14 C15 C16 1166 972 1027 1539 786 849 1231 1327 1624 1706 Холодопроизводительность Ном. 631 696 1437 Регулирование Способ Бесступенчатое производительности Минимальная производительность % 20 13 Потребляемая мощность Охлаждение Ном. 264 246 274 318 351 393 412 459 493 523 585 617 638 EER 2,40 2,83 2,86 2,67 2,77 2,61 2,83 2,68 2,69 2,75 2,63 2,67 ESEER 5,04 5,23 5,39 5,36 5,41 5,11 5,15 4,80 5,12 5,22 4,88 Размеры ВхШхГ 2540x2285x6725 2540x2285x7625 2540x2285x10 325 2540x2285x11 625 2540x2285x12 525 9120 Bec Блок кг 6170 6470 7100 7360 7950 9530 10 180 10 530 12 150 12 990 13 740 7340 7600 8390 9500 9920 10 550 10 910 13 000 13 840 14 610 Эксплуатационный вес 6430 6720 кг Однопроходный кожухотрубный Водяной Тип Объем волы 241 871 263 248 441 383 30.3 33.4 37.6 40.7 46.6 55.8 63.6 68.8 73.7 77.8 81.7 Ном. расход Охлаждение л/сек 49.2 58.9 58 Перепад давления Охлаждение Теплообы кПа 79 76 59 64 43 48 57 57 63 60 Воздушный теплообменник Тип Оребренный с интегрированным переохладителем Вентилятор Расход воздуха Ном. л/сек 41 536 49 843 58 151 66 458 83 072 91 379 99 687 107 994 116 301 Двигатель вентилятора Скорость Охлаждение Ном об/мин 700 Уровень звуковой мощности Охлаждение Ном. дБА Уровень звукового давления Охлаждение 74 76 Асимметричный одновинтовой компрессор Компрессор Рабочий Сторона воды Охлаждение Мин.~Макс. °CDB -8~15 диапазон Сторона воздуха Охлаждение Мин.~Макс. °CDB -18~50 Хладагент R-134a Тип Контуры Количество кг 161 275 Контур охлаждения Заправка 178 200 235 320 343 Подсоединение труб Вход/выход воды из испарителя (наруж.д.) 168.3мм 219.1мм 273мм Электропитание Фаза / Частота / Напряжение Гц/В 3~/50/400

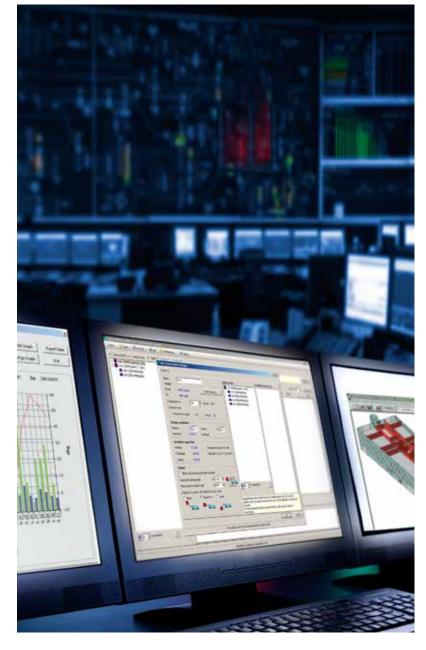
- > Холодильная машина с естественным охлаждением
- Высокоэффективный, стандартный/низкий (XS/XL) и уменьшенный уровень шума
- Еще больше экономии энергии и меньше выбросов СО₃ в холодное время года
- > Широкий рабочий диапазон
- Контроллер Microtech III с усовершенствованными алгоритмами управления и удобным интерфейсом пользователя

СИСТЕМА СТАНДАРТНОЙ УСТАНОВКИ

- > Стартер Звезда-Треугольник (y d)
- > Двойная уставка
- > Контроль фаз
- > Соединение фланцем для испарителя
- > Изоляция испарителя 20мм
- > Электрический нагреватель испарителя
- > Электронно-расширительный вентиль
- > Запорный вентиль на нагнетании
- Датчик температуры атмосферного воздуха и сброс заданного значения
- Счетчик рабочего времени
- > Контактор для общей неисправности
- Сброс уставки, ограничение нагрузки и аварийный сигнал
- > Автоматические выключатели вентиляторов
- > Блокировка главного выключателя
- > Аварийный останов
- Регулирование скорости вентилятора (+тихая работа вентилятора)

ОПЦИИ ПО ЗАПРОСУ

- Плавный старт
- > Рассольная версия
- > Реле тепловой защиты компрессора
- > Контроль минимального/максимального напряжения
- Электросчетчик
- > Конденсатор для компенсации коэффициента мощности
- > Ограничение тока
- Speedtrol (устройство управления скоростью вентилятора ВКЛ/ВЫКЛ до -18°C)
- > Защита теплообменника конденсатора
- > Защита поверхности испарителя
- Трубки конденсатора Си-си
- > Трубки конденсатора Cu-cu sn
- Антикоррозийное покрытие теплообменника
- Реле протока испарителя
- > Запорный вентиль на всасывании
- Манометры стороны высокого давления
- > Манометры стороны низкого давления
- Резиновая антивибрационная опора
- Пружинная антивибрационная опора
- > Один центробежный насос
- > Два центробежных насоса
- Предохранительный клапан на 2 значения давления с отводом
- > Автоматические выключатели компрессора
- > Подвод воды испарителя справа
- > Реле заземления
- > Быстрый перезапуск
- Оптимизированное естественное охлаждение (регулирование скорости вентиляторов)
- Оптимизированное естественное охлаждение (ВКЛ/ВЫКЛ вентиляторов)
- Защитные панели теплообменника конденсатора
- > Обработка теплообменника Blygold


MicroTech III

EWAD-CF

Максимальная эффективность Стандартный/низкий уровень шума

Только охлаждение

Модель					640	770	850	900	C10	C11	C12	C13	C14	C15	C16
Холодопроизводительность	Ном.			кВт	640 (1) / 295 (2)	772(1) / 365 (2)	852 (1) / 413 (2)	902 (1) / 434 (2)	1027 (1)/ 502 (2)	1089 (1) / 524 (2)	1269 (1) / 594 (2)	1349 (1) / 652 (2)	1435 (1) / 663 (2)	1493 (1) / 659 (2)	1555 (1) 722 (2)
Механическая про	: : : : : : : : : : : : : : : : : : :	ъ		кВт	345 (2)	407 (2)	439 (2)	468 (2)	524 (2)	565 (2)	675 (2)	697 (2)	772 (2)	834	(2)
Регулирование	Способ								Бе	сступенчат	oe				
производительности	Минимальная п	ооизводит	ельность	%						12,5					
Потребляемая	Охлаждение	Ном.		кВт	257 (1) /	272 (1) /	293 (1) /	324 (1) /	360 (1) /	399 (1) /	397 (1) /	439 (1) /	454 (1) /	492 (1) /	530 (1) /
мощность					74,3 (2)	87,9 (2)	90,7 (2)	99,8 ²	109 (2)	118 (2)	131 (2)	143 (2)	152 (2)	160 (2)	170 (2)
EER					2,49 (1) / 8.62 ²	2,84 (1) / 8,78 (2)	2,90 (1) / 9,4 (2)	2,78 (1) / 9,04 (2)	2,85 (1) / 9,43 (2)	2,73 (1) / 9,19 (2)	3,19 (1) / 9,67 (2)	3,08 (1) / 9,45 (2)	3,16 (1) / 9,42 (2)	3,04 (1) / 9,33 (2)	2,93 (1) / 9,16 (2)
ESEER					3,44	3,52	3,78	3.50	3.74	3.54	3,88	3,78	4.01	3.95	3,85
Размеры	Блок	ВхШхГ		ММ	2565x2480 x6185	2565x2480 x7085	2565x24			80x8885	3,00		55x2480x10		3,03
Bec (XS)	Блок			кг	7760	8340	89	00	10 160	10 420	11	900	12 540	12 620	12 670
	Эксплуатационн	ный вес		КГ	8040	8580	91	40	10 560	10 820	12	290	13 530	13 610	13 660
Bec (XL)	Блок			КГ	8050	8620	91	90	10 450	10 710	12	190	12 830	12 910	12 960
	Эксплуатационн	ный вес		КГ	8320	8870	94	30	10 850	11 110	12	580	13 820	13 900	13 950
Водяной	Тип								Однопрохо	Эдный кожу	хотрубный				
теплообменник	Объем воды			л	266	251	24	13	40	03	38	36		979	
	Ном. расход	Охлажде	ние	л/сек	27,8	33,5	37,0	39,2	44,6	47,3	55,1	58,6	62,4	64,9	67,6
	Перепад давления	Охлаждение	Теплообменник	кПа	85 / 128 (2)	105 / 172 (2)	90 / 178 (2)	101 / 198 (2)	111 / 245	124 / 272	98 / 232 (2)	110 / 259	139 / 305 (2)	150 / 328 (2)	162 / 354 (2)
Воздушный теплообменник	Тип					,		Оребрен	ный с инте	рированнь	ым переохла	адителем	, ,		,
Вентилятор	Расход воздуха	Ном.		л/сек	50 367	60 440	70		80				95 253		
	Скорость			об/мин						920					
Уровень звуковой мощности (XS)	Охлаждение	Ном.		дБА	99,5	100,2	10	0,5	101,4	101,9	102,4		10	2,5	
Уровень звукового давления (XS)	Охлаждение	Ном.		дБА	79,0 (1)		79,7 (1)		80,21	80,7 (1)	80,3 (1)		80,4	4 (1)	
Уровень звуковой мощности (XL)		Ном.		дБА	96,0	96,8	97	',4	98,0	98,2	98,8		98	3,9	
Уровень звукового давления (XL)	Охлаждение	Ном.		дБА	75,5 (1)	76,3 (1)	76,5	5 (1)	76,9 (1)	77,1 (1)	76,7 (1)		76,8	B (1)	
Компрессор	Тип								Асим	Ім.одновин	говой				
Рабочий	Сторона воды	Охлаждение	Мин.~Макс.	°CDB						-8~15					
диапазон	Сторона воздуха	Охлаждение	Мин.~Макс.	°CDB						-20~45					
Хладагент	Тип									R-134a					
	Заправка			кг	128	146	16	52	18	32	2	14	225	24	48
	Контуры	Количест	во		İ					2					
Подсоединение труб	Вход/выход вод	ы из испар	оителя	мм		16	8,3			21	9,1			273	
Электропитание	Фаза / Частота /			Гц/В						3~/50/400					
Температура воздух	а лля естественног	о охлажле	ния 100%	°C	-0,8	-0,1	1,2	0,4	0.9	0,1	2,9	2,1	1,3	0,7	0,1

⁽¹⁾ Охлаждение: испаритель 16/10°С, атмосферный воздух 35°С, блок в режиме полной нагрузки; стандарт: ISO 3744 (2) Данные подсчитаны при температцре наружного воздуха 5°С, температуре воды на входе 16°С.

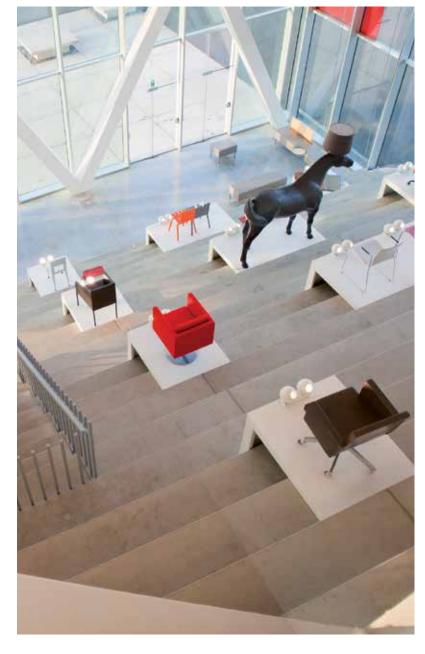
- > Холодильная машина с естественным охлаждением
- » Высокоэффективный, стандартный/низкий (XS/XL) и уменьшенный уровень шума
- Еще больше экономии энергии и меньше выбросов СО₃ в холодное время года
- > Широкий рабочий диапазон
- Контроллер Microtech III с усовершенствованными алгоритмами управления и удобным интерфейсом пользователя

СИСТЕМА СТАНДАРТНОЙ УСТАНОВКИ

- > Стартер Звезда-Треугольник (Y D)
- > Двойная уставка
- > Контроль фаз
- > Соединение фланцем для испарителя
- > Изоляция испарителя 20мм
- > Электрический нагреватель испарителя
- > Электронно-расширительный вентиль
- > Запорный вентиль на нагнетании
- Датчик температуры атмосферного воздуха и сброс заданного значения
- Регулирование скорости вентилятора (+тихая работа вентилятора)
- > Счетчик рабочего времени
- > Контактор для общей неисправности
- > Сброс уставки, ограничение нагрузки и аварийный сигнал
- > Автоматические выключатели вентиляторов
- > Блокировка главного выключателя
- > Аварийный останов

ОПЦИИ ПО ЗАПРОСУ

- > Плавный старт
- > Рассольная версия
- > Реле тепловой защиты компрессора
- > Контроль минимального/максимального напряжения
- > Электросчетчик
- > Конденсатор для компенсации коэффициента мощности
- > Ограничение тока
- Speedtrol (устройство управления скоростью вентилятора ВКЛ/ВЫКЛ до -18°C)
- > Защита теплообменника конденсатора
- Защита поверхности испарителя
- Трубки конденсатора Си-си
- > Трубки конденсатора Cu-cu sn
- Антикоррозийное покрытие теплообменника
- Реле протока испарителя
- > Запорный вентиль на всасывании
- > Манометры стороны высокого давления
- > Манометры стороны низкого давления
- > Резиновая антивибрационная опора
- Пружинная антивибрационная опора
- > Один центробежный насос
- Предохранительный клапан на 2 значения давления с отводом
- > Автоматические выключатели компрессора
- > Подвод воды испарителя справа
- Реле заземления
- > Быстрый перезапуск
- Оптимизированное естественное охлаждение (регулирование скорости вентиляторов)
- Оптимизированное естественное охлаждение (ВКЛ/ВЫКЛ вентиляторов)
- э Защитные панели для теплообменника конденсатора
- > Обработка теплообменника Blygold


MicroTech III

EWAD-CF

Максимальная эффективность Пониженный уровень шума

Только охлаждение

		талтде											О Ш	
Модель				600	740	820	870	980	C10	C11	C12	C13	C14	C15
Холодопроизводительность	Ном.		кВт	602 (1) / 270 (2)	739 (1) / 334 (2)	821 (1) / 379 (2)	866 (1) / 409 (2)	981 (1) / 459 (2)	1034¹ / 492 (2)	1229¹ / 562 (2)	1302¹ / 598 (2)	1374¹ / 619 (2)	1424¹ / 640 (2)	1476¹ / 668 (2)
Механическая про	оизводительност	ъ	кВт	332 (2)	405 (2)	442 (2)	457 (2)	523 (2)	542 (2)	667 (2)	704 (2)	756 (2)	784 (2)	809 (2)
Регулирование	Способ							Бе	сступенчат	oe				
производительности	Минимальная пр	роизводительность	%						12,5					
Потребляемая мощность	Охлаждение	Ном.	кВт	263 (1) / 70,3 (2)	278 (1) / 84,3 (2)	299 (1) / 88,4 (2)	334 (1) / 95,9 (2)	368 (1) / 106 (2)	412 (1) / 112 (2)	403 (1)/ 127 (2)	450 (1) / 141 (2)	466 (1) / 146 (2)	511 (1) / 154 (2)	556 (1) / 161 (2)
EER				2,29 (1) / 8,56 (2)	2,66 (1) / 8,77 (2)	2,75 (1) / 9,29 (2)	2,59 (1) / 9,03 (2)	2,67 (1) / 9,27 (2)	2,51 (1) / 9,21 (2)	3,05 (1) / 9,67 (2)	2,90 (1) / 9,22 (2)	2,95 (1) / 9,4 (2)	2,79 (1) / 9,26 (2)	2,66 (1) / 9,15 (2)
ESEER				3,59	3,66	3,89	3,62	3,83	3,63	4,13	3,89	4,09	4,02	3,92
Размеры	Блок	ВхШхГ	мм	2565x2480 x6185	2565x2480 x7085	2565x24	80x7985	2565x24	80x8885		256	65x2480x10	685	
Bec	Блок		кг	8050	8620	91	90	10 450	10 710	12	190	12 830	12 910	12 960
	Эксплуатационн	ный вес	кг	8320	8870	94	30	10 850	11 110	12	580	13 820	13 900	13 950
Водяной	Тип							Однопрохо	одный кожу	хотрубный				
теплообменник	Объем воды		л	266	251	24	43	40)3	38	86		979	
	Ном. расход	Охлаждение	л/сек	26,2	32,1	35,7	37,6	42,6	44,9	53,4	56,6	59,7	61,9	64,1
	Перепад давления	Охлаждение Теплообменник	кПа	76 / 115 (2)	97 / 159 (2)	84 / 167 (2)	93 / 184 (2)	102 / 225 (2)	113 / 248 (2)	92 / 219 (2)	103 / 243 (2)	128 / 282 (2)	137 / 301 (2)	146 / 321 (2)
Воздушный теплообменник	Тип						Оребрен	ный с интег	рированнь	ім переохла	адителем			
Вентилятор	Расход воздуха	Ном.	л/сек	38 934	46 721	54	508	62	294			73 010		
	Скорость		об/мин						715					
Уровень звуковой мощности	Охлаждение	Ном.	дБА	91,5	92,0	92	2,3	93,5	93,7	94,3	94	4,5	94	4,6
Уровень звукового давления	Охлаждение	Ном.	дБА	71,0 (1)		71,5 (1)		72,3 (1)	72,5 (1)	72,2 (1)	72,	3 (1)	72,	5 (1)
Компрессор	Тип							Асим	м.одновинт	говой				
Рабочий	Сторона воды	Охлаждение Мин.~Макс.	°CDB						-8~15					
диапазон	Сторона воздуха	Охлаждение Мин.~Макс.	°CDB						-20~45					
Хладагент	Тип								R-134a					
	Заправка		кг	128	146	16	52	18	32	2	14	225	2	48
	Контуры	Количество							2					
Подсоединение труб	Вход/выход вод	ы из испарителя	мм		16	8,3			21	9,1			273	
Электропитание	Фаза / Частота /	Напряжение	Гц/В						3~/50/400					
Температура воздух	а для естественног	го охлаждения 100%	°C	-2,3	-1,9	-0,6	-1,5	-0,9	-1,7	0,7	-0,2	-1,1	-1,6	-2,3

⁽¹⁾ Охлаждение: испаритель 16/10°C, атмосферный воздух 35°C, блок в режиме полной нагрузки; стандарт: ISO 3744 (2) Данные подсчитаны при температире наружного воздуха 5°C, температуре воды на входе 16°C

- > Широкий рабочий диапазон
- > Низкие уровни шума при работе
- > Простая установка
- > Ротационный компрессор Daikin
- > Встроенный гидравлический блок

ОПЦИИ (УСТАНАВЛИВАЕМЫЕ НА ЗАВОДЕ)

> Ленточный нагреватель испарителя

УПРАВЛЕНИЕ

- > Регулирование воды на выходе
- > Заданное значение при нагреве и охлаждении

ВХОДНЫЕ КОНТАКТЫ

- > Сухой контакт:
 - ВКЛ/ВЫКЛ
 - Переключение режимов охлаждение/нагрев
- > Программируемый таймер:
 - ВКЛ/ВЫКЛ
 - Двойное заданное значение
 - Тихая работа

Цифровой пульт управления

EWYQ-ADVP

Отопление и охлаждение

Модель					EWYQ005ADVP	EWYQ006ADVP	EWYQ007ADVP
Холодопроизводительность	Ном.			кВт	5,2 (1)	6,0 (1)	7,1 (1)
Теплопроизводительность	Ном.			кВт	6,1 (2) / 5,65 (3)	6,8 (2) / 6,35 (3)	8,2 (2) / 7,75 (3)
Регулирование производительности	Способ					С инверторным управлением	
Потребляемая	Охлаждение	Ном.		кВт	1,89 (1)	2,35 (1)	2,95 (1)
мощность	Нагрев	Ном.		кВт	1,60 (2) / 1,97 (3)	1,84 (2) / 2,24 (3)	2,36 (2) / 2,83 (3)
EER					2,75 (1)	2,55 (1)	2,41 (1)
COP					3,81 (2) / 2,87 (3)	3,70 (2) / 2,83 (3)	3,47 (2) / 2,74 (3)
Размеры	Блок	ВхШхГ		мм		805x1190x360	
Bec	Блок			кг		100	
	Эксплуатационн	ный вес		кг		104	
Водяной	Тип					Пластинчатый	
теплообменник	Объем воды			л		-	
	Ном. расход	Охлажде	ние	л/мин	14,9	17,2	20,4
		Нагрев		л/мин	17,5	19,5	23,5
Воздушный теплообменник	Тип					Трубчатый	
Hacoc	Блок с номинальным ВСД	Охлажде	ние	кПа	49,4	45,1	38,3
Компоненты гидравлической системы	Расширительный бак	Объем		л		6	
Уровень звуковой мощности	Охлаждение	Ном.		дБА		62	63
Уровень звукового	Охлаждение	Ном.		дБА		48	50
давления	Нагрев	Ном.		дБА		48	49
Компрессор	Тип					Герметичный, ротационный компрессор	
Рабочий	Сторона воды	Охлаждение	Мин.~Макс.	°CDB		5~20	
диапазон		Нагрев	Мин.~Макс.	°CDB		25~50	
	Сторона	Охлаждение	Мин.~Макс.	°CDB		10~43	
	воздуха	Нагрев	Мин.~Макс.	°CDB		-15~25	
Хладагент	Тип					R-410A	
	Заправка			кг		1,7	
	Управление					Инвертор	
	Контуры	Количест	гво				
Подсоединение	Вход/выход вод	Ы				1"MBSP	
труб	Спуск воды					под пайку 5/16 SAE	
Электропитание	Фаза / Частота /	Напряжен	ние	Гц/В		1~/50/230	

 $(1) \ Thap.bo3d. \ 35^{\circ}C - LWE \ 7^{\circ}C \ (Dt = 5^{\circ}C) \ \ (2) \ DB/WB \ 7^{\circ}C/6^{\circ}C - LWC \ 35^{\circ}C \ (Dt = 5^{\circ}C) \ \ (3) \ DB/WB \ 7^{\circ}C/6^{\circ}C - LWC \ 45^{\circ}C \ (Dt = 5^{\circ}C)$

- > Все компоненты оптимизированы для работы с хладагентом R-410A
- > Спиральный компрессор с инверторным управлением
- > Низкие уровни шума при работе
- > Простая установка
- > Встроенный гидравлический блок
- > Широкий рабочий диапазон

ОПЦИИ (УСТАНАВЛИВАЕМЫЕ НА ЗАВОДЕ)

- Ленточный нагреватель испарителя (EWYQ-ACV3/ACW1)
- > Ленточный нагреватель трубопровода (EWYQ-ACV3)

ДОПОЛНИТЕЛЬНЫЙ КОМПЛЕКТ

 Цифровая печатная плата ввода/ вывода (только размер 009-013)

УПРАВЛЕНИЕ

- > Регулирование воды на выходе
- > Заданное значение при нагреве и охлаждении

ВХОДНЫЕ КОНТАКТЫ

- > Сухой контакт:
 - ВКЛ/ВЫКЛ
 - Переключение режимов охлаждение/нагрев
- > Программируемый таймер:
 - ВКЛ/ВЫКЛ
 - Двойное заданное значение
 - Тихая работа

Цифровой пульт управления

EWYQ009-011ACV3/EWYQ009-013ACW1

Отопление и охлаждение

Модель					EWYQ009ACV3	EWYQ010ACV3	EWYQ011ACV3	EWYQ009ACW1	EWYQ011ACW1	EWYQ013ACW1
Холодопроизводительность	Ном.			кВт	12,2 (1) / 8,6 (2)	13,6 (1) / 9,6 (2)	15,7 (1) / 11,1 (2)	12,9 (1) / 9,1 (2)	15,7 (1) / 11,1 (2)	17,0 (1) / 13,3 (2)
Теплопроизводительность	Ном.			кВт	10,2 (1) / 9,9 (2)	11,7 (1) / 11,4 (2)	13,8 (1) / 12,9 (2)	11,2 (1) / 10,9 (2)	13,2 (1) / 12,4 (2)	14,8 (1) / 13,9 (2)
Регулирование производительности	Способ				Син	верторным управле	нием	Син	верторным управле	нием
Потребляемая	Охлаждение	Ном.		кВт	2,85 (1) / 2,83 (2)	3,41 (1) / 3,28 (2)	4,13 (1) / 3,90 (2)	3,08 (1) / 3,05 (2)	4,13 (1) / 3,90 (2)	5,52 (1) / 5,18 (2)
мощность	Нагрев	Ном.		кВт	2,43 (1) / 2,99 (2)	2,81 (1) / 3,46 (2)	3,20 (1) / 3,94 (2)	2,69 (1) / 3,31 (2)	3,07 (1) / 3,78 (2)	3,47 (1) / 4,27 (2)
EER					4,27 (1) / 3,05 (2)	4,00 (1) / 2,93 (2)	3,79 (1) / 2,85 (2)	4,19 (1) / 2,99 (2)	3,79 (1) / 2,85 (2)	3,08 (1) / 2,57 (2)
ESEER					4,31	4,30	4,33	4,43	4,44	4,36
COP					4,19 (1) / 3,30 (2)	4,17 (1) / 3,29 (2)	4,30 (1) / 3,27 (2)	4,17 (1) / 3,28 (2)	4,31 (1) / 3,27 (2)	4,28 (1) / 3,25 (2)
Размеры	Блок	ВхШхГ		мм		1435x1418x382			1435x1418x382	
Bec	Блок			кг		180			180	
Водяной	Тип					Пластинчатый			Пластинчатый	
теплообменник	Объем воды			л		1,01			1,01	
	Ном. расход	Охлажде	ние	л/мин	24,7	27,6	31,9	26,1	31,9	38,2
		Нагрев		л/мин	28,3	32,6	36,9	31,2	35,5	39,8
Воздушный теплообменник	Тип					Hi-XSS			Hi-XSS	
Hacoc	Блок с номинальным ВСД	Охлажде	ние	кПа	58,0	54,6	49,1	56,4	49,1	40,9
Компоненты гидравлической системы	Расширительный бак	Объем		л		10			10	
Вентилятор	Расход воздуха	Охлаждение	Ном.	м³/мин	96	100	97		-	
		Нагрев	Ном.	м ³ /мин		90			-	
Двигатель	Скорость	Охлаждение	Ном.	об/мин		780			780	
вентилятора		Нагрев	Ном.	об/мин		760			760	
		Ступени				8			8	
Уровень звуковой	Охлаждение	Ном.		дБА		64		6	4	66
мощности	Нагрев	Ном.		дБА		64			64	
Уровень	Охлаждение	Ном.		дБА		51		5	1	52
звукового	Нагрев	Ном.		дБА		51			51	
давления	Ночной тихий	Охлажде	ние	дБА		45		4	5	46
	режим работы	Нагрев		дБА		42		4	2	43
Компрессор	Тип				Герметич	ный спиральный ко	ипрессор	Герметич	ный спиральный ког	ипрессор
Рабочий	Сторона воды	Охлаждение	Мин.~Макс.	°CDB		5~22			5~22	
диапазон		Нагрев	Мин.~Макс.	°CDB		25~50			25~50	
	Сторона	Охлаждение	Мин.~Макс.	°CDB		10~46			10~46	
	воздуха	Нагрев	Мин.~Макс.	°CDB		-15~35			-15~35	
Хладагент	Тип					R-410A			R-410A	
	Заправка			кг		2,95			2,95	
	Управление				Электрон	ный расширительны	й вентиль	Электрон	ный расширительны	й вентиль
	Контуры	Количес	тво			1			1	
Водяной контур	Диаметр соедин	ительных	труб	дюйм		G 5/4" (внутр.)			G 5/4" (внутр.)	
	Трубопровод			дюйм		5/4"			5/4"	
Электропитание	Фаза / Частота /	Напряже	ние	Гц/В		1~/50/230			3N~/50/400	

⁽¹⁾ Программа теплых полов: охлаждение Та 35°C - LWE 18°C (Dt: 5°C); обогрев Та DB/WB 7°C/6°C - LWC 35°C (Dt: 5°C) (2) Программа FCU: Охлаждение Та 35°C - LWE 7°C (Dt: 5°C); нагрев Та DB/WB 7°C/6°C - LWC 45°C (Dt: 5°C)

EUWY(N-P-B)-KBZW1

ПРЕИМУЩЕСТВА

- > Спиральный компрессор Daikin
- Уменьшение времени монтажа благодаря встроенному насосу и/или буферному накопителю
- Возможность установки расширительного бака ёмкостью 200 л
- > Низкие уровни шума при работе
- > Повышенное удобство в обслуживании
- > Главный выключатель
- > Реле протока воды
- > 3 различных варианта дизайна:
 - холодильная машина EUWYN без встроенного гидравлического блока;
 - холодильная машина EUWYP со встроенным гидравлическим блоком (насос, расширительный бак, гидравлические компоненты);
 - холодильная машина EUWYB со встроенным гидравлическим блоком (буферный резервуар, насос, расширительный бак, гидравлические компоненты)
- → Контроллер SE µC²

- > Температура хладоносителя до 5°С или -10°С.
- Вентиляторы высокого внешнего статического давления (50 Па)

АКСЕССУАРЫ (НАБОР)

- Индикаторы давления хладагента (EKGAU5/8/10/12/16/20/24KA)
- 200л буферный накопитель для моделей EUWYN и EUWYP (ЕКВТ, см. стр. ЕКВТ в этом каталоге)
- > Комплект плавного пуска (EKSS)
- Адресная карта для подсоединения к интерфейсу BMS или интерфейсу удаленного пользователя (EKAC10C)
- > Дистанционный интерфейс пользователя (EKRUMCA)

УПРАВЛЕНИЕ

Регулирование температуры воды на входе

ВХОДНЫЕ / ВЫХОДНЫЕ КОНТАКТЫ

Вход

- > Дистанц. ВКЛ./ВЫКЛ
- Контакт насоса
- > Дистанционный выбор режима охлаждения/отопления

Мощность

- Работа компрессора
- > Отчет об ошибках
- > Включение насоса

μC² SE

R-407C

^{*} Для установки EKRUMCA на блок требуется установить EKAC10C.

EUWYN:

Стандартное оборудование

- > Спиральный компрессор
- Главный выключатель
- > Реле протока воды
- > Фильтр
- > Защитная решётка конденсатора. >
- > Круглогодичная работа

EUWYP = EUWYN +

- > Hacoc
- > Расширительный бак
- Регулирующий клапан
- > Дренаж
- Манометр давления воды
- > Клапан сброса давления

EUWYB = EUWYP +

> Буферный бак

Отопление и охлаждение

Модель					N5	P5	В5	N8	P8	B8	N10	P10	B10	N12	P12	B12	N16	P16	B16	N20	P20	B20	N24	P24	B24
Холодопроизводительность	Ном.			кВт	9,05	9,4	42	17,0		17,5	20,8	21	1,5	24,8	25	,4	34,1	35	,0	39,8	40),9	49,8	50),9
Теплопроизводительность	Ном.			кВт	12,0	11	,4	18,6		17,9	24,2	23	3,3	27,2	26	,0	37,1	35	,7	46,2	44	1,5	54,2	52	2,5
Ступени регулиро	вания			%						0-1	100									0	-50-10	10			
Потребляемая	Охлаждение	Ном.		кВт	3,82	3,9	91	7,51		7,47	8,65	8,	69		11,5		14,9	15	,2	16,4	16	5,6	22,8	22	<u>,</u> ,9
мощность	Нагрев	Ном.		кВт	4,62	4,	52	7,14	(6,88	9,14	8,	98	10,9	10	,4	14,2	14	,0	17,5	17	7,1	21,6	21	,1
EER					2,37	2,4	41	2,26		2,34	2,40	2,	47	2,16	2,2	21	2,29	2,3	30	2,43	2,	46	2,18	2,2	22
COP					2,60	2,	52	2,61		2,60	2,65	2,	59		2,50		2,61	2,5	55	2,64	2,	60	2,51	2,4	49
Размеры	Блок	ВхШхГ		мм		12	230x1	290x73	34			14	450x1	290x73	4		1321	x2580	x734		15	541x25	80x73	4	
Bec	Блок			кг	163	181	193	227	241	253	258	272	284	258	272	284	455	473	485	516	534	546	516	534	546
	Эксплуатационн	ный вес		кг	165	184	252	230	244	312	261	275	343	261	275	343	461	482	550	522	544	612	522	544	612
Водяной	Тип													Плас	тинча	тый									
теплообменник	Объем воды			Л		1,14			1,61	5		1,9			2,375			2,964			3,9			4,524	
	Ном. расход	Охлажде	ние	л/мин		26			49			60			72			98			115			143	
		Нагрев		л/мин		34			53			69			77			106			132			155	
	Перепад давления	Охлаждение	Теплообменник	кПа		10			25			24			33				1	2				19	
Воздушный теплообменник	Тип											Тр	убный	с ваф	ельны	м оре	брени	ем							
Hacoc	Блок с номинальным ВСД	Охлажде	ние	кПа	-		32	-		149	-		67	-	12	-	-	24		-	22	-	-	18	35
Компоненты гидравлической системы	Расширительный бак	Объем		Л	-	1		-		12	-	1	2	-	1		-	1.	2	-	1	2	-	1.	2
Группа вентиляторов	Расход воздуха	Охлаждение	Ном.	м³/мин	160 (на 2	вентил	пятора)								170 (r	а 2 ве	нтиля	тора)							
Группа вентиляторов 2		Охлаждение	Ном.	м³/мин							-								17	'0 (на 2	2 венті				
Уровень звуковой мощности	Охлаждение	Ном.		дБА		67			76					'8				79				8	1		
Компрессор	Тип	1										Гери	иетичн	ый спі	•		омпре	ccop							
Рабочий	Сторона воды	Охлаждение	Мин.~Макс.	°CDB											10~25										
диапазон		Нагрев	Мин.~Макс.	°CDB											35~50										
	Сторона	Охлаждение		°CDB											15~43										
	воздуха	Нагрев	Мин.~Макс.	°CDB											10~21										
Хладагент	Тип													F	R-407C										
	Управление											рмос	татиче	еский р	асши	рител	ьный в	ентил	Ъ						
	Контуры	Количес	тво								1										2				
Контур охлаждения	Заправка			КГ		4,6			4,7				5	,4				5,1			5,4			5,6	
Контур хладагента 2	Заправка			КГ							-							5,1			5,4			5,6	
Подсоединение	Вход/выход вод	Ы								G 1"1/4	,	к.)									2″				
труб	Спуск воды			I						1-1	1/4″										2″				
Электропитание	Фаза / Частота /	Напряже	ние	Гц/В										3N	~/50/4	-00									

- Высокоэффективная машина с высоким значением ESEER
- > Минимальный пусковой ток и быстрая окупаемость
- Для стандартных установок не требуется буферный бак
- Бескорпусный или с насосом заводской сборки (стандартным/высоким ESP)
- Низкий уровень шума благодаря компрессору с инверторным управлением/вентиляторам
- > EWYQ-BAWN: Бескорпусный
- > EWYQ-BAWP: C насосом

СТАНДАРТНЫЙ В НАЛИЧИИ

 Гидравлический пакет: фильтр, запорные вентили, дренажный клапан, автоматическая продувка воздухом, переключатель потока

ОПЦИИ

- > Низкая температура воды на выходе до -10°C
- > Один центробежный насос (низкий напор)
- > Один центробежный насос (высокий напор)
- > Электрический нагреватель испарителя

АКСЕССУАРЫ

- > Манометры (ВНGР26А1)
- Плата (РСВ) с дополнительными входами/выходами (ЕКР1АНТА)
- > Наружный адаптер (DTA104A62)
- Дополнительный пульт управления параллельного соединения (EKRUAHTB)
- Интерфейс Modbus для мониторинга и управления (RTD-W)

BRC21A52

Отопление и охлаждение

Модель					016	021	025	032	040	050	064
Холодопроизводительность	Ном.			кВт	17,4 ¹ /16,6(2)	21,71/20,7(2)	25,81/24,7(2)	32,31/30,9(2)	43,4 ¹ /41,5(2)	51,8 ¹ /49,7 ²	64,5 ¹ /62,3 ²
Теплопроизводительность	Ном.			кВт	16,2 ¹ /17,0(2)	20,31/21,3(2)	24,61/25,7(2)	30,71/32,1(2)	40,6 ¹ /42,5(2)	49,01/51,12	61,5 ¹ /63,7 ²
Регулирование	Способ						Сине	верторным управл	ением		
производительности	Минимальная пр	ооизводит	ельность	%				25			
Потребляемая	Охлаждение	Ном.		кВт	5,60 ¹ /5,80 ²	7,251/7,592	9,291/9,742	13,01/13,52	14,71/15,42	18,81/19,72	26,41/27,42
мощность	Нагрев	Ном.		кВт	5,53 ¹ /5,73 ²	7,10 ¹ /7,44 ²	8,91 ¹ /9,36 ²	10,61/11,12	14,01/14,72	17,6 ¹ /18,5 ²	20,71/21,72
EER					3,11 ¹ /2,86 ²	2,991/7,442	2,781/2,542	2,48 ¹ /2,29 ²	2,95 ¹ /2,69 ²	2,76 ¹ /2,52 ²	2,441/2,272
ESEER					4,33 ¹ /4,21 ²	4,081/4,182	3,851/4,042	3,391/3,622	4,19 ¹ /4,24 ²	3,96 ¹ /4,12 ²	3,641/3,782
COP					2,93 ¹ /2,97 ²	2,861/2,862	2,761/2,752	2,90(1).	/2,89(2)	2,781/2,762	2,971/2,942
Размеры	Блок	ВхШхГ		мм		1684x1371x774		1684x1684x774	1684x23	358x780	1684x2980x780
Bec	Блок			кг	264	3	17	397	57	71	730
	Эксплуатационн	ный вес		кг	267	3	20	401	57	77	738
Водяной	Тип							Пластинчатый			
теплообменник	Объем воды			л		1,9		2,9	3,	,8	5,7
	Ном. расход	Охлажде	ние	л/мин	50	62	74	93	124	148	185
		Нагрев		л/мин	46	58	71	88	116	140	176
	Перепад давления	Охлаждение	Итого	кПа	20	30	42	3	0	42	30
Воздушный теплообменник	Тип							Hi-XSS			
Вентилятор	Расход воздуха	Охлаждение	Ном.	м ³ /мин	171	1	85	233	37	70	466
		Нагрев	Ном.	м ³ /мин	171	1	85	233	37	70	466
Уровень звуковой мощности	Охлаждение	Ном.		дБА		78		80	8	1	83
Компрессор	Тип						Герметичі	ный спиральный к	омпрессор		
Рабочий	Сторона воды	Охлаждение	Мин.~Макс.	°CDB				5~20			
диапазон		Нагрев	Мин.~Макс.	°CDB				25~50			
	Сторона	Охлаждение	Мин.~Макс.	°CDB				-5~43			
	воздуха	Нагрев	Мин.~Макс.	°CDB				-15~35			
Хладагент	Тип							R-410A			
	Заправка			кг		7,6		9,6	15	5,2	19,2
	Управление						Электронн	ный расширительн	ый вентиль		
	Контуры	Количес	гво					1			
Подсоединение	Вход/выход вод	Ы				1-1/4"	(внутр.)			2" (внутр.)	
труб	Спуск воды					1-	1/4"			1-1/2"	
Электропитание	Фаза / Частота /	Напряже	ние	Гц/В				3N~/50/400			

(1) EWAQ-BAWN: Бескорпусный (2): EWAQ-BAWP: С насосом

- Все компоненты оптимизированы для работы с хладагентом R-410A
- > Несколько компрессоров в одном контуре
- Надежный и эффективный с высокими значениями EER
- Антикоррозионная обработка алюминиевого оребрения теплообменника
- Низкие уровни шума при работе
- > Простая установка
- Вентиляторы имеют защиту при перегрузке (4 - 8 вентиляторов, в зависимости от размера блока)
- > Предохранительные клапаны в каждом контуре
- > Электронные автоматические выключатели
- > Электронно-расширительный вентиль
- > Двухконтурный пластинчатый теплообменник
- Легкий доступ ко всем компонентам гидравлики с 3 сторон
- > Вынесенный электрический шкаф облегчает доступ
- Доступ к компрессорам и элементам управления с одной стороны блока
- Повышенная надежность благодаря 2 независимым контурам охлаждения (EWYQ130-250DAYN)
- > Промежуточный теплообменник (от >100 кВт)
- > Разборный фильтр/осушитель
- > Пульт управления Daikin (Pcaso) с удобным ЖК-интерфейсом

ОПЦИИ (УСТАНАВЛИВАЕМЫЕ НА ЗАВОДЕ)

- > Контакт одного насоса
- > Контакт сдвоенного насоса
- > Один насос
- > Сдвоенный насос (1 корпус насоса, два двигателя)
- > Высоконапорный насос (только один насос)
- > Буферный бак
- Вентиляторы инвертора (нет в наличии с функцией тихой работы)
- > Гликоль 0°C / -10°C
- > Двойной предохранительный клапан
- > Ленточный нагреватель испарителя
- Дополнительные вентили (на стороне нагнетания, на линии для жидкости и запорный клапан на всасывании)
- > Амперметр / вольтметр
- > Низкий уровень шума
- > Защитные решётки конденсатора

АКСЕССУАРЫ (НАБОР)

- > Адресная карта (EKACPG)
- › Удаленный пользовательский интерфейс (EKRUPG)
- > Комплект трубопровода (EKGN210 и EKGN260)

PCASO

Высокоэффективные холодильные машины EWYQ-DAYN могут быть оснащены системой DICN, которая позволяет выполнять одновременную работу 4 холодильных машин как единой установки, чтобы обеспечить необходимую холодопроизводительность. Это обеспечивает точный и эффективный контроль производительности, а также резервирование и надёжную работу системы. Эта функция позволяет холодильной машине Daikin работать с одним пультом управления. Использование DICN возможно только в рамках одной серии моделей.

EWYQ130,150DAYN

Отопление и охлаждение

Модель					080	100	130	150	180	210	230	250
Холодопроизводительность	Ном.			кВт	76,6 ¹ / 78,1 ²	100 ¹ / 101 ²	135 ¹ / 138 ²	144 ¹ / 147 ²	182 ¹ / 185 ²	210 ¹ / 213 ²	229 ¹ / 233 ²	251 ¹ / 254 ²
Теплопроизводительность	Ном.			кВт	88,21 / 86,52	115 ¹ / 113 ²	1501 / 1482	166 ¹ / 163 ²	200¹ / 197²	227 ¹ / 223 ²	2601 / 2562	2831 / 279 ²
Ступени регулиро	вания			%	0-50	-100	0-25-50	-75-100	21/29-43/50/57-71/79-100	0-25-50-75-100	22/28-44/50/56-72/78-100	0-25-50-75-10
Потребляемая	Охлаждение	Ном.		кВт	26,81 / 27,52	36,71 / 37,12	48,41 / 49,02	56,51 / 57,12	64,81 / 65,72	76,5 ¹ / 77,2 ²	83,61 / 83,82	95,11 / 95,12
мощность	Нагрев	Ном.		кВт	30,51 / 31,02	38,71 / 39,12	50,51 / 51,12	59,81 / 60,22	69,21 / 69,92	78,5 ¹ / 79,1 ²	85,91 / 86,02	98,6 ¹ / 98,5 ²
EER					2,86 ¹ / 2,84 ²	2,72 ¹ / 2,72 ²	2,791 / 2,822	2,55 ¹ / 2,57 ²	2,81 ¹ / 2,82 ²	2,75 ¹ / 2,76 ²	2,741 / 2,782	2,64 ¹ / 2,67 ²
ESEER					3,84 ¹ / 3,76 ²	3,681 / 3,682	4,031 / 3,992	3,841 / 3,842	4,061 / 4,022	3,941 / 3,962	3,931 / 4,042	3,76 ¹ / 3,87 ²
COP					2,891 / 2,792	2,971 / 2,892	2,971 / 2,902	2,78 ¹ / 2,71 ²	2,89 ¹ / 2,82 ²	2,89 ¹ / 2,82 ²	3,031 / 2,982	2,87 ¹ / 2,83 ²
Размеры	Блок	ВхШхГ		мм	2311x20	00x2566	2311x20	000x2631	2311x20	00x3081	2311x20	00x4850
Bec	Блок			кг	1400	1450	1550	1600	1850	1900	3200	3300
	Эксплуатацион	ный вес		кг	1415	1465	1567	1619	1875	1927	3239	3342
Водяной	Тип							Пластинчатый	і, один на блок			
теплообменник	Ном. расход	Охлажде	ние	л/мин	221	287	390	416	525	605	662	722
		Нагрев		л/мин	251	327	427	473	570	645	740	806
	Перепад	Охлаждение	Итого	кПа	3	6	43	38	41	44	39	38
	давления	Нагрев	Итого	кПа	47	46	51	49	48	50	48	46
Воздушный теплообменник	Тип						Тру	убчатый с вафел	тьным оребрень	1 ем		
Вентилятор	Расход воздуха	Ном.		м³/мин	78	30	800	860	12	90	16	000
	Скорость			об/мин	88	30	900		970		9	00
Уровень звуковой мощности	Охлаждение	Ном.		дБА	8	6	88	89	g	0	g)1
Компрессор	Тип							Спиральный	і компрессор			
Рабочий	Сторона воды	Охлаждение	Мин.~Макс.	°CDB				-10	~25			
диапазон		Нагрев	Мин.~Макс.	°CDB				25	~50			
	Сторона	Охлаждение	Мин.~Макс.	°CDB				-15	~43			
	воздуха	Нагрев	Мин.~Макс.	°CDB				-10	~21			
Хладагент	Тип							R-4	10A			
	Управление						Элен	ктронный расш	ирительный вен	тиль		
	Контуры	Количес	гво			l				2		
Контур охлаждения	Заправка			кг	33	37	23	26	3	32	4	13
Контур хладагента 2	Заправка			КГ	-	-	23	26	3	2		13
Подсоединение	Вход / выход во	дяного те	плообмен	ника					3″			
труб	Слив водяного	теплообм	енника					1/:	2″G			
Электропитание	Фаза / Частота /	Напряже	ние	Гц/В				3~/5	0/400			

⁽¹⁾ Для моделей N (стандарт) (2) Для моделей P (с доп. насосом / +OPSP) и для моделей B (с доп. насосом и буферным накопителем / +OPSP +OPBT)

- Эффективность класса А в режиме нагрева
- Увеличенный рабочий диапазон: температура наружного воздуха от -10°С до +46°С в режиме охлаждения и до -17°С в режиме нагрева
- 2 полностью независимых контура охлаждения
- Уменьшенный корпус благодаря раме V-образного вида
- Надежные и эффективные спиральные компрессоры с высокими значениями EER
- Дизайн холодильных машин полностью соответствует новым Европейским директивам (EN14511, EN14825)
- Высокий уровень обслуживания благодаря уменьшенному весу, компактности и оптимизированному доступу к компонентам
- Блок может быть оснащен гидравлическим модулем для оптимизации установочной площади и расходов
- Широкий диапазон опций и аксессуаров
- Инверторная система управления вентиляторами для улучшенной эффективности при частичной нагрузке
- Уменьшенный уровень шума
- Контроллер MicroTech III для эффективного управления и простой работы с интерфейсом
- Специальный комплект (опция) для северных стран для улучшения рабочих условий холодильной машины в режиме нагрева

СИСТЕМА СТАНДАРТНОЙ УСТАНОВКИ

- Coединение VICTAULIC для испарителя
- Изоляция испарителя 20мм
- Антикоррозийное покрытие теплообменника
- Водяной фильтр
- Пускатель для прямого запуска (DOL)
- Двойная уставка
- Электрический нагреватель испарителя
- Реле протока испарителя
- Электронно-расширительный вентиль
- Датчик температуры атмосферного воздуха и сброс заданного
- Счетчик рабочего времени
- Контактор для общей неисправности
- Блокировка главного выключателя

ОПЦИИ (УСТАНАВЛИВАЕМЫЕ НА ЗАВОДЕ)

- Частичная рекуперация теплоты
- Рассольная версия (до -15°C)
- Защита теплообменника конденсатора
- Защита поверхности испарителя
- Трубки конденсатора Си-си
- Трубки конденсатора Cu-Cu-Sn
- Запорный вентиль нагнетательной линии
- Запорный вентиль всасывающей линии
- Манометры стороны высокого давления
- Манометры стороны низкого давления
- Один центробежный насос
- Два центробежных насоса
- Предохранительный клапан на 2 значения давления с отводом
- Водяной фильтр
- Обработка теплообменника Blygold
- Реле тепловой защиты компрессора
- Контроль фаз
- Регулирование минимального/максимального напряжения
- Электросчетчик
- Конденсаторы для компенсации коэффициента мощности
- Speedtrol (устройство управления скоростью вентилятора ВКЛ/ВЫКЛ до -10°С в режиме охлаждения)
- Сброс уставки, ограничение нагрузки и аварийный сигнал на внешнем устройстве
- Автоматические выключатели компрессора
- Автоматические выключатели вентиляторов
- Регулирование скорости вентилятора (инверторное управление)
- Реле заземления
- Комплект Nordic
- Резиновая антивибрационная опора
- Пружинная антивибрационная опора
- Наружный бак со стойкой или без (500 и 1000л)
- Комплект для транспортировки (контейнер)
- Комплект для перевозки
- Защитные панели теплообменника конденсатора

MicroTech III

EWYQ-F- EWYQ-F-

Отопление и охлаждение Стандартный/низкий уровень шума

630 160 190 210 230 310 340 380 400 430 510 570 кВт Холодопроизводительность Ном. 164 184 205 231 304 335 376 401 427 501 565 624 Теплопроизводительность Ном. кВт 173 197 227 254 329 362 404 429 463 535 607 674 Регулирование производительности Способ Ступенчатое Потребляемая Охлаждение Ном. кВт 57.6 633 70.3 79.3 102 114 129 138 145 172 195 214 мошность Нагрев Ном. кВт 54,0 61,6 70,5 79,2 101 113 126 133 140 167 190 210 EER 2,84 2,92 2,99 2,93 2,91 2,90 2,94 2,91 2,90 2,91 ESEER 3,73 3,89 3,81 4,07 4,19 3,99 3,96 4,14 4,20 3,98 4,06 COP 3,21 3,20 3,22 3,21 3,21 3,21 3,23 3,30 3,21 3,20 3,24 Блок ВхШхГ 2270x1200x4370 2270x1200x5270 2220x2258x4125 2220x2258x5925 2220x2258x6825 2220x2258x5025 Размеры мм Bec (XS) Блок кг 1430 1850 2300 2350 2900 2910 2920 3730 3750 4250 4280 4670 1470 2980 3000 3840 4370 4780 Эксплуатационный вес 1890 2340 2390 2990 3850 4400 кг Bec (XL) 3080 Блок ΚГ 1520 1940 2400 2440 3060 3070 3890 3900 4400 4440 4820 Эксплуатационный вес кг 1570 1980 2440 2480 3130 3150 3160 3990 4010 4520 4550 4940 Водяной Тип Пластинчатый теплообменник теплообменнин Объем водь 18 44 44 60 70 Ном. расход Охлаждение л/сек 7,8 8,8 14,6 16,0 18,0 19,2 20,4 24,0 27,1 29,9 Нагрев л/сек 8,3 9,5 10,9 12,2 15,9 17,5 19,5 20,7 22,3 25,8 29,3 32,5 Охлаждение Теплообменник кПа 22 28 36 40 21 27 30 29 34 37 42 56 Нагрев Теплообменник кПа давления 32 50 25 37 33 43 50 Воздушный теплообменник Тип Оребренный с интегрированным переохладителем Спиральный компрессор Компрессор Тип Количество 12 Вентилятор Количество 8 10 14 22 577 21 593 26 992 43 187 55 213 53 983 64 780 43 187 75 577 Расход воздуха Ном. л/сек Скорость об/мин 900 Уровень звуковой мощности (XS) Охлаждение Ном дБА 92 94 95 97 98 99 100 Уровень звуковой мощности (XL) Охлаждение Ном. дБА 89 92 93 95 95 Уровень звукового давления (XS) Охлаждение Ном. дБА 72 74 76 77 78 79 80 Уровень звукового давления (XL) Охлаждение Ном. дБА 75 75 76 Сторона воды Охлаждение Мин.~Макс. °CDB -15~15 -15~15 Нагрев Мин.~Макс. °CDB 25~50 25~50 Охлаждение Мин.~Макс. °CDB -10~46 -10~46 Сторона Нагрев Мин.~Макс. °CDB -17~20 -17~20 Хладагент Тип R-410A 117 84 84 92 94 Заправка 58 Контуры Количество Подсоединение труб Вход/выход воды из испарителя (наруж.д.) 3" 3" 3~/50/400 Электропитание Фаза / Частота / Напряжение 3~/50/400

EWYQ-F-XR

ПРЕИМУЩЕСТВА

- Эффективность класса A в режиме нагрева
- Увеличенный рабочий диапазон: температура наружного воздуха от -10°C до +46°C в режиме охлаждения и до -17°C в режиме нагрева
- 2 полностью независимых контура охлаждения
- Уменьшенный корпус благодаря раме V-образного вида
- Надежные и эффективные спиральные компрессоры с высокими значениями EER
- Дизайн холодильной машины полностью соответствует новым Европейским директивам (EN14511, EN14825)
- Высокий уровень обслуживания благодаря уменьшенному весу, компактности и оптимизированному доступу к компонентам
- Блок может быть оснащен гидравлическим модулем для оптимизации площади установки и расходов
- Широкий диапазон опций и аксессуаров
- Инверторная система управления вентиляторами для улучшенной эффективности при частичной нагрузке
- Уменьшенный уровень шума
- Контроллер MicroTech III для эффективного управления и простого соединения с интерфейсами
- Специальный комплект (опция) для северных стран для улучшения рабочих условий холодильной машины в режиме нагрева

СИСТЕМА СТАНДАРТНОЙ УСТАНОВКИ

- Соединение VİCTAULIC для испарителя
- Изоляция испарителя 20мм
- Антикоррозийное покрытие теплообменника
- Водяной фильтр
- Пускатель для прямого запуска (DOL)
- Двойная уставка
- Электрический нагреватель испарителя
- Реле протока испарителя
- Электронный расширительный вентиль
- Датчик температуры атмосферного воздуха и сброс заданного
- Счетчик рабочего времени
- Контактор для общей неисправности
- Блокировка главного выключателя

ОПЦИИ (УСТАНАВЛИВАЕМЫЕ НА ЗАВОДЕ)

- Частичная рекуперация теплоты
- Рассольная версия (до -15°C)
- Защита теплообменника конденсатора
- Защита поверхности испарителя
- Трубки конденсатора Cu-cu
- Трубки конденсатора Cu-Cu-Sn
- Запорный вентиль нагнетательной линии
- Запорный вентиль всасывающей линии
- Манометры стороны высокого давления
- Манометры стороны низкого давления
- Один центробежный насос
- Два центробежных насоса
- Предохранительный клапан на 2 значения давления с отводом
- Водяной фильтр
- Обработка теплообменника Blygold
- Реле тепловой защиты компрессора
- Контроль фаз
- Регулирование минимального/максимального напряжения
- Электросчетчик
- Конденсаторы для компенсации коэффициента мощности
- Speedtrol (устройство управления скоростью вентилятора ВКЛ/ВЫКЛ до -10°С в режиме охлаждения)
- Сброс уставки, ограничение нагрузки и аварийный сигнал на внешнем устройстве
- Автоматические выключатели компрессора
- Автоматические выключатели вентиляторов
- Регулирование скорости вентилятора (инверторное управление)
- Реле заземления
- Комплект Nordic
- Резиновая антивибрационная опора
- Пружинная антивибрационная опора
- Наружный бак с корпусом или без (500 и 1000л)
- Комплект для транспортировки (контейнер)
- Комплект для перевозки
- Защитные панели для теплообменника конденсатора

MicroTech III

EWYQ-F-

Отопление и охлаждение

Модель					160	180	200	220	300	330	360	390	420	490	550	610
Холодопроизводительность	Ном.			кВт	158	178	200	223	296	326	363	389	415	487	546	606
Теплопроизводительность	Ном.	к			173	197	227	254	329	362	404	429	463	535	607	674
Регулирование производительности	Способ						Ступен	нчатое					Ступе	нчатое		
Потребляемая	Охлаждение	Ном.		кВт	56,2	62,3	68,4	77,9	97,4	111	127	134	141	167	191	210
мощность	Нагрев	Ном.		кВт	54,0	61,6	70,5	79,2	101	113	126	133	140	167	190	210
EER					2,81	2,86	2,92	2,87	3,04	2,93	2,86	2,90	2,93	2,91	2,85	2,89
ESEER					4,33	4,39	4,38	4,19	4,63	4,68	4,37	4,44	4,60	4,83	4,50	4,62
COP					3,	20	3,22	3,21	3,24	3,21	3,21	3,23	3,30	3,21	3,20	3,21
Размеры	Блок	ВхШхГ		мм	2270x12	00x4370	2270x12	00x5270	222	20x2258x41	125	2220x22	58x5025	2220x22	58x5925	2220x2258x6825
Bec	Блок			кг	1520	1940	2400	2440	3060	3070	3080	3890	3900	4400	4440	4820
	Эксплуатационн	ный вес		кг	1570	1980	2440	2480	3130	3150	3160	3990	4010	4520	4550	4940
Водяной	Тип					Плас	тинчатый т	геплообме	нник			Плас	тинчатый :	теплообме	нник	
теплообменник	Объем воды			Л		1	8		4	4	44	6	0		70	
	Ном. расход	Охлажде	ние	л/сек	7,5	8,5	9,6	10,7	14,2	15,6	17,4	18,6	19,8	23,3	26,1	29,0
		Нагрев		л/сек	8,3	9,5	10,9	12,2	15,9	17,5	19,5	20,7	22,3	25,8	29,3	32,5
	Перепад	Охлаждение	Теплообменник	кПа	20	26	34	38	20	25	28	27	32	35	39	53
	давления	Нагрев	Теплообменник	кПа	25	32	43	50	25	31	37	33	40	43	50	66
Воздушный теплообменник	Тип				Ope6	ренный с і	интегриро	ванным пе	реохладит	елем	Ope	ренный с	интегриро	ванным пе	реохлади	телем
Компрессор	Тип					Сп	тиральный	компресс	ор			Сг	пиральный	компресс	ор	
	Количество											4			6	
Вентилятор	Количество			4 5 8 8 10		-	12		14							
	Расход воздуха	Ном.		л/сек	17 380	16 564	20	706	33	129	33 129	42 431	41 411	49	693	57 975
		Нагрев	Ном.	л/сек	21 047	20 433	25 :	542	40	867	40 867	51 850	51 084	61	300	71 517
	Скорость			об/мин			70						7	00		
Уровень звуковой мощности	Охлаждение	Ном.		дБА	83	84	8		8	-	89	-	0		92	
Уровень звукового давления	Охлаждение	Ном.		дБА	64	65	66	67	6	9	69	7	0		71	
Рабочий	Сторона воды	Охлаждение	Мин.~Макс.	°CDB			-15 [,]							~15		
диапазон		Нагрев	Мин.~Макс.	°CDB			25~							~50		
	Сторона	Охлаждение	Мин.~Макс.	°CDB			-10 ⁻							~46		
	воздуха	Нагрев	Мин.~Макс.	°CDB			-17 ⁻						-17			
Хладагент	Тип						R-4							10A		
	Контуры	Количес	тво	,			2	2						2		
Контур охлаждения				КГ	38		58		8		84	92	94		05	117
Подсоединение труб					2,5" 3"				,"	3″						
Электропитание	Фаза / Частота /	Напряже	ние	Гц/В			3~/50	0/400					3~/5	0/400		

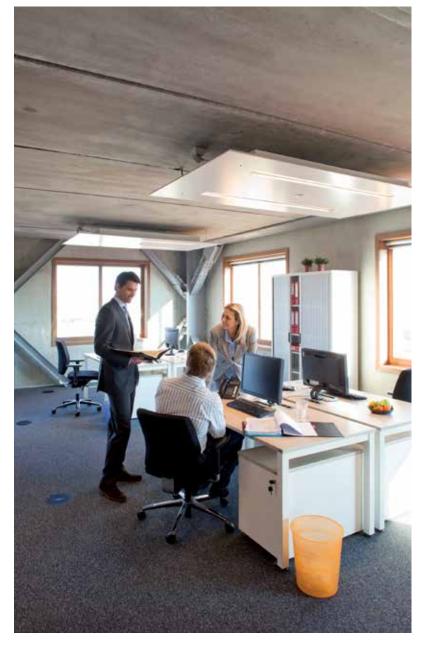
- > Спиральный компрессор с инвертором пост.т. собственной разработки, единственный в своем роде на рынке, изготовлен по новейшей технологии Daikin
- > Система дублирования (до 12 компрессоров)
- > Самое высокое значение ESEER этого класса (до 5)
- > Низкий пусковой ток
- Тихий режим работы

СИСТЕМА СТАНДАРТНОЙ УСТАНОВКИ

- > Двойная уставка
- > Контроль фаз
- > Cоединение VICTAULIC для испарителя
- > Изоляция испарителя 20мм
- > Электрический нагреватель испарителя
- > Электронный расширительный вентиль
- Датчик температуры атмосферного воздуха и сброс заданного значения
- > Счетчик рабочего времени
- > Контактор для общей неисправности
- > Автоматические выключатели вентиляторов
- > Блокировка главного выключателя
- > Водяной фильтр
- Реле протока испарителя
- > Антикоррозийное покрытие теплообменника

ОПЦИИ

- Рассольная версия
- > Защита теплообменника конденсатора
- > Защита поверхности испарителя
- Трубки конденсатора Си-си
- › Трубки конденсатора Cu-Cu-Sn
- > Запорный вентиль нагнетательной линии
- > Запорный вентиль всасывающей линии
- > Манометры стороны высокого давления
- > Манометры стороны низкого давления
- > Один центробежный насос (8 разных моделей)
- > Два центробежных насоса (4 разные модели)
- Контроль фаз
- Регулирование минимального/максимального напряжения
- Электросчетчик
- > Speedtrol (устройство управления скоростью вентилятора вкл/выкл до -10°С при охлаждении)
- Сброс уставки, ограничение нагрузки и аварийный сигнал на внешнем устройстве
- > Автоматические выключатели компрессора
- Реле заземления
- > Резиновая антивибрационная опора
- Пружинная антивибрационная опора
- > Наружный бак без корпуса (500 или 1000л)
- > Наружный бак с корпусом (500 или 1000л)
- > Koмплект Nordic



MicroTech III

EWYQ190GZXS EWYQ260-380GZXS

Максимальная эффективность Стандартный уровень шума

					100	260	210	220	200			
Модель					190	260	310	330	380			
Колодопроизводительность	Ном.			кВт	193	261	310	327	380			
Теплопроизводительность	Ном.	кВт			182	246	289	314	362			
Потребляемая	Охлаждение	Ном.		кВт	72,2	93,8	122	116	143			
мощность	Нагрев	Ном.		кВт	70,5	93,1	115	119	142			
Регулирование	Способ				Бесступенчатое							
производительности	Минимальная п	производительность 9		%	14,4	14,3	14,9	14,3	14,8			
EER					2,67	2,78	2,55	2,81	2,65			
ESEER					4,74	4,77	4,86	4,71	4,69			
COP					2,57	2,65	2,52	2,63	2,56			
Размеры	Блок ВхШхГ			мм	2270x1290x4450	2223x22	234x3560	2223x2234x4460				
Вес Блок				кг	1650	2200	2250	2500	2600			
	Эксплуатационный вес			кг	1727	2333	2397	2675	2788			
Водяной	Тип				Пластинчатый теплообменник							
теплообменник	Объем воды			л	29	61	75	79	92			
	Ном. расход	Охлаждение		л/сек	9,2	12,5	14,8	15,6	18,1			
		Нагрев	агрев л/с		8,8	11,9	14,0	15,2	17,5			
	Перепад	Охлаждение	е Теплообменник кПа		26	14	15	16	18			
	давления	Нагрев	Теплообменник	кПа	22	11	13	14	18			
Воздушный теплообменник	Тип											
Компрессор					Спиральный компрессор с инвертором пост.т.							
	Количество				6	8	10	10				
Вентилятор	Тип				Прямая крыльчатка							
	Количество				4		6	8				
	Расход воздуха Ном.			л/сек	17 473	26	209	34 946				
	Скорость		об/мин		920							
ровень звуковой мощности	Охлаждение	Ном.		дБА	93	9	94	96				
ровень звукового давления	Охлаждение	Ном.		дБА	76		78		79			
Рабочий	Сторона воды			°CDB			-8~20					
диапазон		Нагрев		°CDB			25~50					
	Сторона	Охлаждение Мин.~М		°CDB	-18~43							
	воздуха	Нагрев	Мин.~Макс.				-10~20					
Хладагент	Тип				R-410A							
	Заправка кг				48	72 96						
	Контуры Количество				1	2						
Подсоединение труб				DVV II)	2,5" 4,5"							
					3~/50/400							

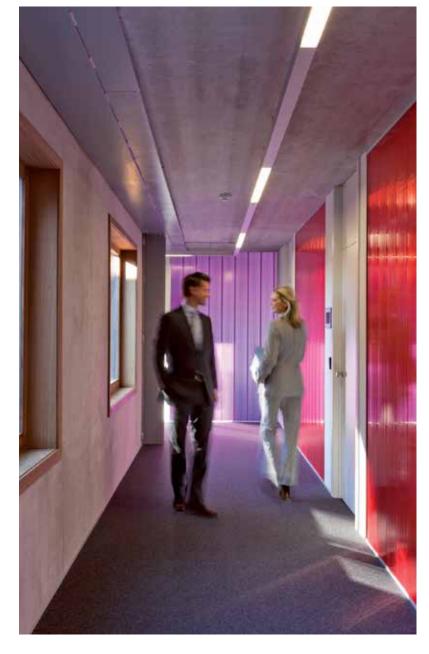
- > Спиральный компрессор с инвертором пост.т. собственной разработки, единственный в своем роде на рынке, изготовлен по новейшей технологии Daikin
- > Система дублирования (до 12 компрессоров)
- > Самое высокое значение ESEER этого класса (до 5)
- > Низкий пусковой ток
- > Тихий режим работы

СИСТЕМА СТАНДАРТНОЙ УСТАНОВКИ

- Двойная уставка
- > Контроль фаз
- > Cоединение VICTAULIC для испарителя
- > Изоляция испарителя 20мм
- > Электрический нагреватель испарителя
- > Электронный расширительный вентиль
- Датчик температуры атмосферного воздуха и сброс заданного значения
- > Счетчик рабочего времени
- > Контактор для общей неисправности
- > Автоматические выключатели вентиляторов
- > Блокировка главного выключателя
- > Водяной фильтр
- > Реле протока испарителя
- > Антикоррозийное покрытие теплообменника

ОПЦИИ

- Рассольная версия
- > Защита теплообменника конденсатора
- > Защита поверхности испарителя
- Трубки конденсатора Си-си
- › Трубки конденсатора Cu-Cu-Sn
- > Запорный вентиль нагнетательной линии
- > Запорный вентиль всасывающей линии
- > Манометры стороны высокого давления
- > Манометры стороны низкого давления
- > Один центробежный насос (8 разных моделей)
- > Два центробежных насоса (4 разные модели)
- > Контроль фаз
- Регулирование минимального/максимального напряжения
- Электросчетчик
- Speedtrol (устройство управления скоростью вентилятора - вкл/выкл - до -10°С при охлаждении)
- Сброс уставки, ограничение нагрузки и аварийный сигнал на внешнем устройстве
- Автоматические выключатели компрессора
- Реле заземления
- > Резиновая антивибрационная опора
- Пружинная антивибрационная опора
- > Наружный бак без корпуса (500 или 1000л)
- > Наружный бак с корпусом (500 или 1000л)
- > Koмплект Nordic



MicroTech III

EWYQ190GZXR

EWYQ260-370GZXR

Максимальная эффективность Сокращенный уровень шума

Модель					190	260	300	320	370			
Холодопроизводительность	Ном.			кВт	188	256	302	321	371			
Теплопроизводительность				кВт	182	246	289	314	362			
Потребляемая			кВт	73,0	94,5	124	117	145				
мощность	Нагрев	Ном.		кВт	70,5	93,1	115	119	142			
Регулирование	Способ				.,.	,	регулирование					
производительности	Минимальная п	роизводит	ельность	%	14,4	14,3	14,9	14,3	14,8			
EER					2,58	2,71	2,44	2,75	2,56			
ESEER					4,77	4,83	4,99	5,00	4,98			
COP					2,57	2,65	2,52	2,63	2,56			
Размеры	Блок ВхШхГ		мм	2270x1290x4450	2223x2234x3560		2223x2234x4460	2223x2241x4460				
Bec	Блок	5лок			1668	2224	2280	2530	2636			
	Эксплуатационный вес кг				1795	2457	2527	2805	2924			
Водяной теплообменник	Тип				теплообменник							
	Объем воды	Объем воды		л	29	61	75	79	92			
	Ном. расход	Охлаждение		л/сек	9,0	12,2	14,5	15,3	17,7			
		Нагрев		л/сек	8,8	11,9	14,0	15,2	17,5			
	Перепад	Охлаждение	Теплообменник	кПа	25	13	14	15	17			
	давления	Нагрев	Теплообменник	кПа	22	11	13	14	18			
Воздушный теплообменник	Тип					Оребренный	с интегрированным пере	охладителем				
Компрессор	Тип				Спиральный компрессор с инвертором пост.т.							
	Количество				6	8	1	0	12			
Вентилятор	Тип				Прямая крыльчатка							
	Количество				4		6	8				
	Расход воздуха	а Ном.		л/сек	15 131 22 697			30 263				
	Скорость об/мин			об/мин			715					
/ровень звуковой мощности	Охлаждение	Ном.		дБА	89	ç	91	92				
ровень звукового давления	Охлаждение	Ном.		дБА	72	74		7	75			
Рабочий диапазон	Сторона воды	Охлаждение Мин.~Макс. °CDB		°CDB	-8~20							
		Нагрев	Нагрев Мин.~Макс. °CDB		25~50							
	Сторона	Охлаждение	Мин.~Макс.	°CDB								
	воздуха	Нагрев	Мин.~Макс.	°CDB			-10~20					
Хладагент	Тип				R-410A							
	Заправка кг			КГ	48	7	'2	92	96			
	Контуры Количество				1 2							
Подсоединение труб	Вход/выход воды из испарителя (наруж.д.)				2,5" 4,5"							
Электропитание	Фаза / Частота / Напряжение Гц / В				3~/50/400							

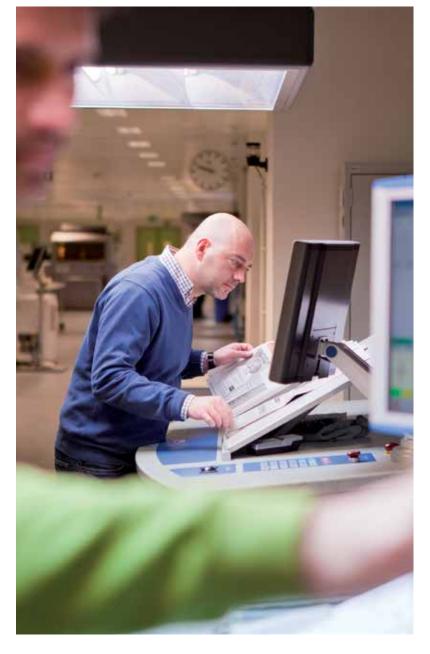
- > Оптимизирован для работы с хладагентом R-134a
- > Электронный расширительный вентиль
- Кожухотрубный испаритель DX один ход по хладагенту для сведения к минимуму потерь давления
- > Низкий пусковой ток
- > Газовый бойлер не требуется
- > Оптимизированные циклы разморозки
- > Оптимизированные значения ESEER
- Имеется опция с частичной или полной рекуперацией теплоты
- > Микропроцессорное ПИД-регулирование.
- > Коэффициент мощности до 0,95
- > 2-3 полностью независимых контура охлаждения
- Стандартный рабочий диапазон до -12°C

СИСТЕМА СТАНДАРТНОЙ УСТАНОВКИ

- Двойная уставка
- > Автоматические выключатели вентиляторов
- Датчик температуры атмосферного воздуха и сброс заданного значения
- > Контроль фаз
- > Стартер компрессора с инверторным управлением
- > Cоединение VICTAULIC для испарителя
- > Электрический нагреватель испарителя
- > Электронный расширительный вентиль
- > Запорный вентиль на нагнетании
- > Запорный вентиль на всасывании
- > Контактор для общей неисправности
- > Счетчик рабочего времени

ОПЦИИ

- > Частичная рекуперация теплоты
- > Рассольная версия
- > Контроль минимального/максимального напряжения
- > Ограничение тока
- > Изоляция испарителя 20мм
- > Манометры стороны низкого давления
- > Защита теплообменника конденсатора
- > Трубки конденсатора Си-си
- Трубки конденсатора Cu-Cu-Sn
- Антикоррозийное покрытие теплообменника
- Реле протока испарителя
- > Манометры стороны высокого давления
- Комплект для транспортировки (контейнер)
- > Резиновая антивибрационная опора
- > Пружинная антивибрационная опора
- > Один центробежный насос (низкий напор)
- > Один центробежный насос (высокий напор)
- > Два центробежных насоса (низкий напор)
- Два центробежных насоса (высокий напор)
- Предохранительный клапан на 2 значения давления с отводом
- Наружный бак с корпусом или без (500 и 1000л)
- Регулирование скорости вентилятора (+тихая работа вентилятора)
- > Koмплект Nordic
- > Комплект для перевозки
- Сброс уставки, ограничение нагрузки и аварийный сигнал на внешнем устройстве
- > Электросчетчик
- Подвод воды испарителя справа
- > Защитные панели для теплообменника конденсатора



винтовой

EWYD250-290BZ

Стандартная эффективность Стандартный уровень шума

Отопление и охлаждение

Модель					250	270	290	320	340	370	380	410	440	460	510	520	580
Холодопроизводительность	Ном.			кВт	253	272	291	323	337	363	380	411	434	455	503	520	580
Теплопроизводительность	Ном.			кВт	271	298	325	334	351	381	412	445	465	477	532	560	618
Регулирование	Способ									Бе	ступенча	тое					
производительности	Минимальная п	роизводи	гельность	%					13							9	
Потребляемая	Охлаждение	Ном.		кВт	91,3	101	109	117	126	136	144	154	165	163	180	188	218
мощность	Нагрев	Ном.		кВт	91,5	100	108	118	127	134	143	157	167	166	177	185	208
EER					2,77	2,70	2,66	2,75	2,69	2,68	2,65	2,68	2,64	2,79	2,80	2,76	2,66
ESEER					3,93	3,92	3,89	3,95	3,89	3,90	3,82	3,91	3,89	4,18	4,	01	3,93
COP					2,96	2,97	3,01	2,82	2,77	2,85	2,88	2,84	2,79	2,87	3,01	3,03	2,97
Размеры	Блок	ВхШхГ		мм	23	35x2254x3	547		2335x22	254x4381		2335x22	54x5281		2335x22	254x6583	
Bec	Блок			кг	3410	3455	3500	38	70	3940	4010	43	90	5015	5495	57	735
	Эксплуатацион	ный вес		кг	3550	3595	3640	40	10	4068	4138	45	18	5255	5724	5964	5953
Водяной	Тип								0,	днопрохо	дный кож	ухотрубны	ый				
теплообменник	Объем воды			л		138		13	33		1	28		240	2:	29	218
	Ном. расход	Охлажде	ение	л/сек	12,12	13,03	13,94	15,46	16,21	17,42	18,25	19,72	20,81	21,83	24,11	24,92	27,87
		Нагрев		л/сек	12,89	14,18	15,49	15,89	16,66	18,11	19,57	21,15	22,14	22,68	29,39		
	Перепад	Охлаждение	Теплообменник	кПа	37	42	48	53	58	53	57	46	51	61	50	53	65
	давления	Нагрев	Теплообменник	кПа	42	49	58	55	60	57	65	52	57	66	55	60	71
Воздушный теплообменник	Тип							0	ребреннь	ый с интег	оированн	ым перео	хладителе	eM.			
Вентилятор	Расход воздуха	Ном.		л/сек		31 728			42	304		52	880		63	456	
	Скорость			об/мин							920						
Уровень звуковой	Охлаждение	Ном.		дБА		100,5			10	1,2		10	1,8		10	3,6	
мощности	Нагрев	Ном.		дБА		100,5			10	1,2		10	1,8		10	3,6	
Уровень звукового	Охлаждение	Ном.		дБА		82,1			82	2,3		82	2,5		83	3,7	
давления	Нагрев	Ном.		дБА	8:	2,1		82	2,3		82	2,5			83,7		
Компрессор	Тип								Полугер	метичный	одновин	товой ком	прессор				
Рабочий	Сторона воды	Охлаждение	Мин.~Макс.	°CDB							-8~15						
диапазон		Нагрев	Мин.~Макс.	°CDB							35~55						
	Сторона	Охлаждение	Мин.~Макс.	°CDB							-12~45						
	воздуха	Нагрев	Мин.~Макс.	°CDB							-12~20						
Хладагент	Тип										R-134a						
	Заправка			кг	88	94	100	11	18	121,0	124	14	18	177	183	1	86
	Контуры	Количес	тво						2							3	
Подсоединение труб	Вход/выход вод	цы из испа	рителя (на	аруж.д.)					139,7мм						219	,1мм	
Электропитание	Фаза / Частота /	Напраже	ние	Гц/В							3~/50/400)					

- > Оптимизирован для работы с хладагентом R-134a
- > Электронный расширительный вентиль
- Кожухотрубный испаритель DX один ход по хладагенту для сведения к минимуму потерь давления
- > Низкие уровни шума при работе
- > Низкий пусковой ток
- > Газовый бойлер не требуется
- > Оптимизированные циклы разморозки
- > Оптимизированные значения ESEER
- Имеется опция с частичной или полной рекуперацией теплоты
- > Микропроцессорное ПИД-регулирование.
- > Коэффициент мощности до 0,95
- > 2-3 полностью независимых контура охлаждения
- Стандартный рабочий диапазон до -12°С

СИСТЕМА СТАНДАРТНОЙ УСТАНОВКИ

- > Двойная уставка
- > Контроль фаз
- > Стартер компрессора с инверторным управлением
- > Cоединение VICTAULIC для испарителя
- > Электрический нагреватель испарителя
- > Электронный расширительный вентиль
- > Запорный вентиль на нагнетании
- > Запорный вентиль на всасывании
- > Контактор для общей неисправности
- > Счетчик рабочего времени
- Датчик температуры атмосферного воздуха и сброс заданного значения
- > Автоматические выключатели вентиляторов
- Регулирование скорости вентилятора (+тихая работа вентилятора)

ОПЦИИ

- > Частичная рекуперация теплоты
- > Рассольная версия
- > Контроль минимального/максимального напряжения
- Ограничение тока
- > Изоляция испарителя 20мм
- > Защита теплообменника конденсатора
- > Трубки конденсатора Си-си
- > Трубки конденсатора Cu-Cu-Sn
- > Антикоррозийное покрытие теплообменника
- > Реле протока испарителя
- Манометры стороны высокого давления
- Комплект для транспортировки (контейнер)
- > Резиновая антивибрационная опора
- Пружинная антивибрационная опора
- > Один центробежный насос (низкий напор)
- > Один центробежный насос (высокий напор)
- > Два центробежных насоса (низкий напор)
- > Два центробежных насоса (высокий напор)
- Предохранительный клапан на 2 значения давления с отводом
- > Наружный бак со стойкой или без (500 и 1000л)
- > Подвод воды испарителя справа
- > Электросчетчик
- Сброс уставки, ограничение нагрузки и аварийный сигнал на внешнем устройстве
- > Koмплект Nordic
- > Комплект для перевозки
- > Манометры стороны низкого давления
- > Защитные панели теплообменника конденсатора

EWYD250-290BZ

АКСЕССУАРЫ

- > Адресная карта RS485 (EKAC200J)
- > Kapтa Ethernet BACnet (EKACBAC)
- > Kapтa связи LON (EKACLONP)
- > Преобразователь из RS485 в RS232 (EKCON)
- > Преобразователь из RS485 в USB (EKCONUSB)
- Стационарный модем (ЕКМОDEM)
- > Moдем GSM (EKGSMOD)
- > Дистанционный интерфейс пользователя (EKRUPCJ)
- > Пульт последовательного соединения (EKDSSP)
- > Цифровой пульт последовательного соединения (EKDDSP)
- > Система контроля PlantWatchPRO (EKPWPRO)
- > Система контроля PlantWatchPRO (модем и web-сервер включены) EKPWPROM
- > Серийная карта RS232 Интерфейс модема (только одноблочная система) (EKACRS232)
- > Kарта Web-сервера (EKACWEB)
- > Серийная карта BACnet MSTP (EKACBACMSTP)
- Модуль дооснащения PlantWatchPro I/O для подсоединения и модификаций (EKPWPROEXT)
- Межсетевой интерфейс (Ethernet LAN SNMP) (EKGWWEB)
- Межсетевой интерфейс для модема (EKGWMODEM)

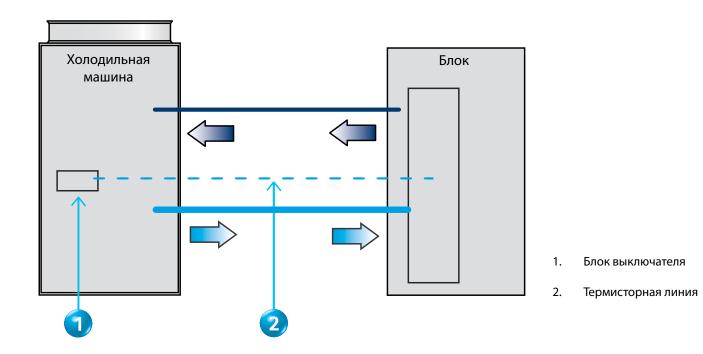
Стандартная эффективность

Отопление и охлаждение

Низкий уровень шума

Модель					250	270	290	320	330	360	370	400	430	450	490	510	570
Холодопроизводительность	Ном.			кВт	247	265	290	315	330	354	370	402	423	446	491	508	564
Теплопроизводительность	Ном.			кВт	271	298	325	334	350	380	412	444	465	477	532	560	618
Регулирование	Способ									Бе	сступенча	тое					
производительности	Минимальная п	ооизводи	гельность	%					13							9	
Потребляемая	Охлаждение	Ном.		кВт	89,5	99,5	110	114	123	133	144	150	163	158	176	185	217
мощность	Нагрев	Ном.		кВт	91,5	100	108	118	126	133	143	156	167	166	177	185	208
EER					2,76	2,66	2,63	2,75	2,67	2,65	2,58	2,67	2,60	2,82	2,79	2,75	2,61
ESEER					4,05	4,04	3,99	4,16	4,05	4,04	4,01	4,06	4,02	4,18	4,16	4,10	3,98
COP					2,96	2,97	3,01	2,83	2,77	2,85	2,89	2,84	2,79	2,87	3,01	3,03	2,97
Размеры	Блок	ВхШхГ		мм	23	35x2254x3	547		2335x22	54x4381		2335x22	54x5281		2335x22	54x6583	
Bec	Блок			кг	3750	3795	3840	42	10	4280	4350	47	'30	5525	6005	62	245
	Эксплуатационн	ный вес		кг	3888	3933	3978	43	43	4408	4478	48	358	5765	6234	6474	6463
Водяной	Тип								O,	днопрохо	дный кож	ухотрубн	ый				
теплообменник	Объем воды			л		138		13	33		1.	28		240	2	29	218
	Ном. расход	Охлажде	ение	л/сек	11,83	12,70	13,89	15,12	15,83	16,98	17,77	19,28	20,30	21,39	23,56	24,34	27,11
		Нагрев л/сек					15,49	15,89	16,66	18,11	19,57	21,15	22,14	22,68	25,33	26,65	29,39
	Перепад	Охлаждение	Теплообменник	кПа	36	40	48	51	55	50	55	44	48	59	48	51	62
	давления	Нагрев	Теплообменник	кПа	42	49	58	55	60	57	65	52	57	66	55	60	71
Воздушный теплообменник	Тип							0	ребреннь	ій с интег	рированн	ым перео	хладителе	ew .			
Вентилятор	Расход воздуха	Охлаждение	Ном.	л/сек		24 432			32	576		40	720		48	864	
		Нагрев	Ном.	л/сек		31 728			42	304		52	880		63	456	
Двигатель	Скорость	Охлаждение	Ном.	об/мин							715						
вентилятора		Нагрев	Ном.	об/мин							920						
Уровень звуковой	Охлаждение	Ном.		дБА		94,0			94	1,7		95	5,3		9	7,0	
мощности	Нагрев	Ном.		дБА		94,9			96			96	5,7		98	3,4	
Уровень звукового	Охлаждение	Ном.		дБА		75,6				5,8			5,0		7	7,2	
давления	Нагрев	Ном.		дБА		76,5			77	7,2		77	7,4		78	3,6	
Компрессор	Тип								Полугер	метичный	і одновин	товой ком	ипрессор				
Рабочий	Сторона воды	Охлаждение	Мин.~Макс.	°CDB							-8~15						
диапазон		Нагрев	Мин.~Макс.	°CDB							35~55						
	Сторона	Охлаждение	Мин.~Макс.	°CDB							-12~45						
	воздуха	Нагрев	Мин.~Макс.	°CDB							-12~20						
Хладагент	Тип										R-134a						
	Заправка			КГ	88	94	100	11	18	121	124	14	48	177	183	1	86
	Контуры	/1							2							3	
Подсоединение труб			•						139,7мм						219	,1мм	
Электропитание	Фаза / Частота /	Напряже	ние	Гц/В							3~/50/400)					

Конденсаторный блок



СОДЕРЖАНИЕ

ERAD-E-SS	11
ERAD-E-SL	11

Конденсаторные блоки Daikin могут использоваться в различных системах кондиционирования, охлаждения и вентиляции.

СХЕМА ТРУБОПРОВОДОВ ДЛЯ СИСТЕМ ОХЛАЖДЕНИЯ

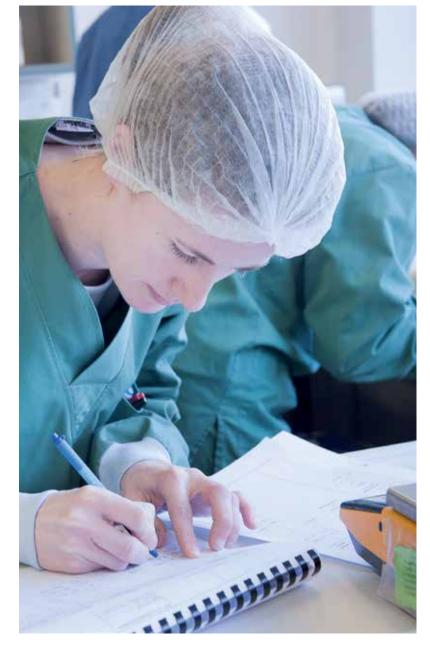
- > Один контур хладагента
- > Компактная конструкция
- > Широкий рабочий диапазон (температура наружного воздуха до -18°С)
- > Температура хладоносителя до -15°C

СИСТЕМА СТАНДАРТНОЙ УСТАНОВКИ

- > Стартер Звезда-Треугольник (y d)
- > Двойная уставка
- > Контроль фаз
- > Запорный вентиль на нагнетании
- > Запорный вентиль на всасывании
- Датчик температуры атмосферного воздуха и сброс заданного значения
- > Счетчик рабочего времени
- > Контактор для общей неисправности
- > Сброс уставки, ограничение нагрузки и аварийный сигнал на внешнем устройстве
- > Автоматические выключатели вентиляторов
- > Блокировка главного выключателя

ОПЦИИ (УСТАНАВЛИВАЕМЫЕ НА ЗАВОДЕ)

- > Полная рекуперация теплоты
- Уастичная рекуперация теплоты
- > Плавный старт
- > Реле тепловой защиты компрессора
- > Контроль минимального/максимального напряжения
- Электросчетчик
- > Конденсаторы для компенсации коэффициента мощности
- > Ограничение тока
- Speedtrol (устройство управления скоростью вентилятора ВКЛ/ВЫКЛ до -18°С)
- > Защита теплообменника конденсатора
- Трубки конденсатора Си-си
- > Трубки конденсатора Cu-cu sn
- > Антикоррозийное покрытие теплообменника
- > Манометры стороны высокого давления
- > Комплект для транспортировки (контейнер)
- Резиновая антивибрационная опора
- > Пружинная антивибрационная опора
- Предохранительный клапан на 2 значения давления с отводом
- Автоматические выключатели компрессора
- > Комплект для перевозки
- Регулирование скорости вентилятора (+тихая работа вентилятора)
- > Защитные панели для теплообменника конденсатора
- > Обработка теплообменника Blygold



MicroTech III

ERAD170,200E-SS

Только охлаждение

Модель				120	140	170	200	220	250	310	3770	440	490
Холодопроизводительность	Ном.		кВт	121	144	165	196	219	251	309	370	435	488
Регулирование	Способ							Бесступ	енчатое				
производительности	Минимальная пр	оизводительность	%					25	5,0				
Потребляемая мощность	Охлаждение	Ном.	кВт	42,1	51,2	57,7	65,6	74,2	77,0	93,8	123	148	161
EER				2,88	2,82	2,86	2,99	2,95	3,27	3,30	3,02	2,95	3,02
Размеры	Блок	ВхШхГ	мм	2273x12	92x2165	2273x12	92x3065	2273x12	92x3965		2223x22	236x3070	
Bec	Блок		кг	15	84	17	41	19	36		26	579	
	Эксплуатационн	ый вес	кг	16	517	17	81	19	81		27	'56	
Воздушный теплообменник	Тип					(Оребренный	с интегриро	ванным пере	охладителе	И		
Компрессор	Тип						(Одновинтово	й компрессо	р			
Вентилятор	Расход воздуха	Ном.	л/сек	10 924	10 576	16 386	15 865	21 848	21 153	32	772	31	729
Двигатель вентилятора	Скорость	Охлаждение Ном.	об/мин					90	00				
Уровень звуковой мощности	Охлаждение	Ном.	дБА		9	12		93	9	4		95	
Уровень звукового давления	Охлаждение	Ном.	дБА			74				7	5		76
Хладагент	Тип							R-1	34a				
	Заправка		кг	17	20	22	27	29	32	4	5	54	58
	Контуры	Количество							1				
Подсоединение	Вход/выход воді	ы из испарителя (н	аруж.д.)						-				
труб	Вход/выход воді	ы из испарителя (н	аруж.д.)				76мм					139,7мм	
Электропитание	Фаза / Частота /	Напряжение	Гц/В					3~/50	0/400				

ERAD-E-SL

ПРЕИМУЩЕСТВА

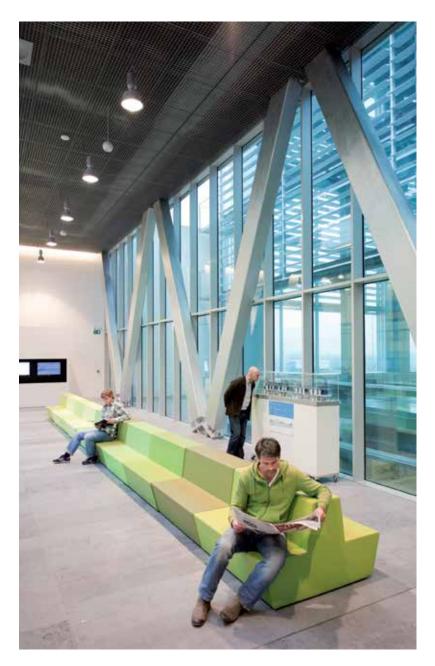
- > Низкие уровни шума при работе
- > Один контур хладагента с одним винтовым компрессором
- > Компактная конструкция
- Широкий рабочий диапазон (температура наружного воздуха до -18°C)
- Температура хладоносителя до -15°C

СИСТЕМА СТАНДАРТНОЙ УСТАНОВКИ

- > Стартер Звезда-Треугольник (y d)
- > Двойная уставка
- > Размыкатели цепи вентиляторов с термореле
- > Контроль фаз
- > Запорный вентиль на нагнетании
- > Запорный вентиль на всасывании
- Датчик температуры атмосферного воздуха и сброс заданного значения
- > Счетчик рабочего времени
- > Контактор для общей неисправности
- Сброс уставки, ограничение нагрузки и аварийный сигнал на внешнем устройстве
- Автоматические выключатели вентиляторов
- > Блокировка главного выключателя

ОПЦИИ (УСТАНАВЛИВАЕМЫЕ НА ЗАВОДЕ)

- > Полная рекуперация теплоты
- > Частичная рекуперация теплоты
- > Плавный старт
- > Реле тепловой защиты компрессора
- > Контроль минимального/максимального напряжения
- Электросчетчик
- > Конденсаторы для компенсации коэффициента мощности
- Ограничение тока
- > Speedtrol (устройство управления скоростью вентилятора ВКЛ/ВЫКЛ до -18°C)
- > Защита теплообменника конденсатора
- Трубки конденсатора Cu-cu
- > Трубки конденсатора Cu-cu sn
- > Антикоррозийное покрытие теплообменника
- > Манометры стороны высокого давления
- > Комплект для транспортировки (контейнер)
- Резиновая антивибрационная опора
- > Пружинная антивибрационная опора
- Предохранительный клапан на 2 значения давления с отводом
- > Автоматические выключатели компрессора
- Оптимизированное естественное охлаждение (ВКЛ/ВЫКЛ вентиляторов)
- > Защитные панели для теплообменника конденсатора
- > Обработка теплообменника Blygold



MicroTech III

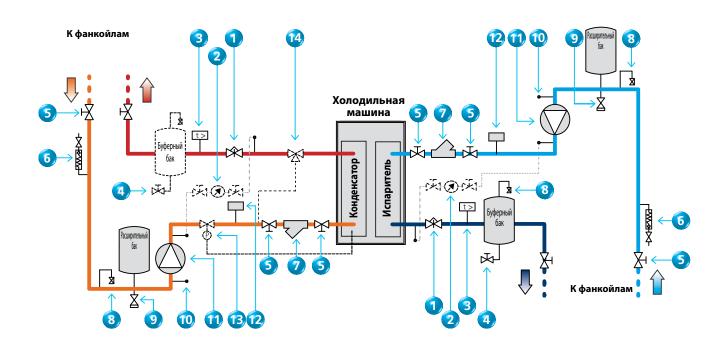
ERAD160,190E-SL

Только охлаждение

Модель				120	140	160	190	210	240	300	350	410	460
Холодопроизводительность	Ном.		кВт	116	137	159	187	209	243	298	352	409	462
Регулирование	Способ							Бесступ	енчатое				
производительности	Минимальная пр	ооизводительность	%					25	5,0				
Потребляемая мощность	Охлаждение	Ном.	кВт	42,4	52,5	57,7	66,3	73,9	78,1	91,9	122	150	167
EER				2,74	2,61	2,75	2	,83	3,11	3,24	2,88	2,73	2,76
Размеры	Блок	ВхШхГ	мм	2273x12	292x2165	2273x12	92x3065	2273x12	92x3965		2223x22	236x3070	
Bec	Блок		кг	16	584	18	341	20	36		27	789	
	Эксплуатационн	ый вес	кг	17	717	18	881	20	81		28	386	
Воздушный теплообменник	Тип						Оребренный	і с интегриро	ванным пер	еохладителе	И		
Компрессор	Тип						(Одновинтово	й компрессо	р			
Вентилятор	Расход воздуха	Ном.	л/сек	8373	8144	12 560	12 216	16 747	16 288	25	120	24	432
Двигатель вентилятора	Скорость	Охлаждение Ном.	об/мин					70	00				
Уровень звуковой мощности	Охлаждение	Ном.	дБА	8	39	9	90	91		9	2		93
Уровень звукового давления	Охлаждение	Ном.	дБА			71				7	'3		74
Хладагент	Тип							R-1	34a				
	Заправка		кг	17	20	22	27	29	32	4	5	54	58
	Контуры	Количество						•	1				
Подсоединение	Вход/выход вод	ы из испарителя (н	аруж.д.)						-				
труб	Вход/выход вод	ы из испарителя (н	аруж.д.)				76мм					139,7мм	
Электропитание	Фаза / Частота /	Напряжение	Гц/В					3~/50	0/400				

Водяное охлаждение

Компания Daikin предлагает Вам компактные холодильные машины с водяным охлаждением, которым необходима совсем небольшая площадь в техническом помещении. Они используются для коммерческих и промышленных целей, вырабатывают холодную и горячую воду, которая может использоваться для охлаждения, обогрева или даже одновременно и для охлаждения, и для обогрева.


СОДЕРЖАНИЕ

EWWP-KBW1N	120	DWSC / DWDC	140
EWWD-J-SS	122	DWME	142
EWWD-G-SS	124		
EWWD-G-XS	126		
EWWD-I-SS	128		
EWWD-I-XS	130		
EWWD-H-XS	132		
EWWQ-B-SS	134		
EWWQ-B-XS	136		
EWWD-FZXS	138		

- 1. Балансировочный вентиль
- 2. Манометр
- 3. Датчик температуры
- 4. Дренажный клапан
- 5. Запорный вентиль
- 6. Вентиль для наполнения системы
- 7. Фильтр
- 8. Дренаж
- 9. Предохранительный клапан
- 10. Точка замера давления
- 11. Hacoc
- 12. Реле протока
- 13. Клапан регулирования давления
- 14. Трехходовой вентиль

СХЕМА ТРУБОПРОВОДОВ ДЛЯ СИСТЕМ ОХЛАЖДЕНИЯ

- Стандартная комплектация: главный выключатель, водяной фильтр, реле протока, воздухоотделитель, точки замера давления
- > Спиральный компрессор Daikin
- Все компоненты оптимизированы для работы с хладагентом R-407C
- Электронная система управления с цифровым дисплеем
- > Низкие уровни шума при работе
- > Низкий уровень потребления энергии
- > Возможно увеличение мощности до 195 кВт
- > Компактные размеры и малый объем хладагента
- > Простота монтажа и эксплуатации
- Пластинчатый теплообменник из нержавеющей стали
- Выбор режима охлаждения или нагрева с помощью пульта дистанционного управления
- > Тепловой насос вода-вода
- > Совместим с гидравлическим модулем
- > Koнтроллер MC² SE
- РСО³ контроллер для холодильной станции из 2 или 3 блоков

ДЛЯ СИСТЕМЫ, СОСТОЯЩЕЙ ИЗ ОДНОГО МОДУЛЯ

- > Стандартный главный выключатель.
- В комплект с блоком включены основные гидравлические компоненты для модели КА: реле протока, воздухоотделитель, фильтр + запорные вентили для конденсатора и испарителя

ОПЦИИ (УСТАНАВЛИВАЕМЫЕ НА ЗАВОДЕ)

> Температура охлаждённой воды до - 5°C или -10°C.

АКСЕССУАРЫ (НАБОР)

- Гидравлический модуль (см. стр. EHMC в этом каталоге)
- Адресная карта для подсоединения к интерфейсу BMS или интерфейсу удаленного пользователя (EKAC10C)
- Дистанционный интерфейс пользователя (EKRUMCA)
- > Низкий уровень шума 14 л.с. (EKLS1)
- > Низкий уровень шума 22-65 л.с. (EKLS2)

УПРАВЛЕНИЕ

- Микропроцессорное управление
- > Регулирование температуры воды на входе
- Регулирование температуры холодной или горячей воды

ВХОДНЫЕ / ВЫХОДНЫЕ КОНТАКТЫ

Вход

- Дистанц. переключатель ВКЛ./ВЫКЛ
- > Контакт насоса
- > Переключение охлаждение / обогрев

Мощность

- > Работа компрессора
- Отчет об ошибках
- > Включение насоса

MicroTech III

EWWP014-035KBW1N

EWWP090-130KBW1N

EWWP145-195KBW1N

ТАБЛИЦА ПЕРЕКЛЮЧЕНИЙ			1 /	иодул	P (WO	ЦЕЛЬ Κ	B)		21	иодул	я (мод	ЦЕЛЬ К	B)		3 MO	ДУЛЯ (М	ЛОДЕЛ	ь КВ)	
индекс мощности		014	022	028	035	045	055	065	090	100	110	120	130	145	155	165	175	185	195
ХОЛОДОПРОИЗВОДИТЕЛЬНОСТЬ (к	Эт)	13,0	21,5	28,0	32,5	43,0	56,0	65,0	86,0	99,0	112	121	130	142	155	168	177	186	195
ТЕПЛОПРОИЗВОДИТЕЛЬНОСТЬ (кВт)		16,6	27,3	35,4	41,2	54,8	71,4	82,7	110	126	143	154	165	181	198	214	226	237	248
	EWWP014KBW1N	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	EWWP022KBW1N	-	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
БЛОК	EWWP028KBW1N	-	-	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
+ УПРАВЛЕНИЕ	EWWP035KBW1N	-	-	-	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-
(устанавливается на заводе)	EWWP045KBW1N	-	-	-	-	1	-	-	-	-	-	-	-	-	-	-	-	-	-
(устанавливается на заводе)	EWWP055KBW1N	-	-	-	-	-	1	-	-	-	-	-	-	-	-	-	-	-	-
	EWWP065KBW1N	-	-	-	-	-	-	1	-	-	-	-	-	-	-	-	-	-	-
МОДУЛЬНЫЕ БЛОКИ	EWWP045KAW1M	-	-	-	-	-	-	-	2	1	-	-	-	2	1	-	-	-	-
(в качестве аксессуара имеется	EWWP055KAW1M	-	-	-	-	-	-	-	-	1	2	1	-	1	2	3	2	1	-
в наличии пульт управления)	EWWP065KAW1M	-	-	-	-	-	-	-	-	-	-	1	2	-	-	-	1	2	3
, , ,	ECB2MUW	-	-	-	-	-	-	-	1	1	1	1	1	-	-	-	-	-	-
УПРАВЛЕНИЕ (доп.)	ECB3MUW	-	-	-	-	-	-	-	-	-	-	-	-	1	1	1	1	1	1

Например:

для системы 121 кВт, выбирайте : EWWP055KBW1N + EWWP065KBW1N

Только нагрев и Только охлаждение

Модель					014	022	028	035	045	055	065	090	100	110	120	130	145	155	165	175	185	195
Холодопроизводительность	Ном.			кВт	13,0	21,5	28,0	32,5	43,0	56,0	65,0	86,0	99,0	112	121	130	142	155	168	177	186	195
Теплопроизводительность	Ном.			кВт	16,6	27,3	35,4	41,2	54,8	71,4	82,7	110	126	143	154	165	181	198	214	226	237	248
Количество ступе	ней производите	ельности					1			2				4						5		
Потребляемая мощность	Охлаждение	Ном.		кВт	3,61	5,79	7,48	8,75	11,80	15,50	17,60	23,6	27,3	31,0	33,1	35,2	39,1	42,8	46,5	48,6	50,7	52,8
EER					3,60	3,71	3,74	3,71	3,64	3,61	3,69	3,64	3,63	3,61	3,66	3,69	3,63	3,62	3,61	3,64	3,67	3,69
Размеры	Блок	ВхШхГ		мм		600x6	00x600		600	x600x1	200		1200	0x600x1	200			1	1800x6	00x120)	
Bec	Блок			кг	118	155	165	172	300	320	334	600	620	640	654	668	920	940	960	974	988	1002
Водяной	Тип			,									Пласти	нчатый								
теплообменник -	Минимальный о	бъем воды	в системе	л	62	103	134	155	205	268	311	205	26	58	3	11	20	05		268		311
испаритель	Расход воды	Мин.		л/мин	19	31	40	47	62	80	93	123	142	161	173	186	204	222	241	254	267	280
		Ном.		л/мин	37	62	80	93	123	161	186	247	284	321	347	373	407	444	482	507	533	559
		Макс. л/мин			75	123	161	186	247	321	373	493	568	642	694	745	814	889	963	1015	1066	1118
Водяной	Тип	1,											Пласти	нчатый								
теплообменник -	Расход воды	Мин.		л/мин	24	39	51	59	79	102	118	157	181	205	221	237	260	283	307	323	339	355
конденсатор		Ном.		л/мин	48	78	102	118	157	205	237	314	362	410	442	474	519	567	614	647	679	711
		Макс.		л/мин	95	157	203	237	314	410	474	629	724	819	883	948	1038	1133	1229	1293	1357	1422
Уровень звуковой мощности	Охлаждение	Ном.		дБА		64		71	6	7	74		71		75	77		73		76	78	79
Компрессор	Тип										Герме	етичны	й спира	льный	компр	eccop						
Рабочий	Испаритель	Охлаждение	Мин.~Макс.	°CDB									-10 (OP	ZL) ~ 25	;							
диапазон	Конденсатор	Охлаждение	Мин.~Макс.	°CDB									20 -	~ 55								
Хладагент	Тип												R-4	07C								
	Управление									Te	ермост	атичесь	кий рас	ширите	ельный	вентил	ТЬ					
	Контуры	Количес	тво				1			2				4						5		
Контур охлаждения	Заправка	кг	1,2	2	2,5	3,1	4	.6	5,6		9,2		10,2	11,2		13,8		14,8	15,8	16,8		
Подсоединение	Вход/выход вод	рд/выход воды из испарителя					25мм		FE	3SP 40N	IM		2 x 2	x FBSP	38мм			3	x2xFE	SP 38M	M	
труб	Сток воды испа	воды испарителя										Ус	тановка	на мес	сте							
	Вход/выход вод	ды испарителя ыход воды из конденсатора				FBSP	25мм		FE	3SP 40N	IM		2 x 2	x FBSP :	38мм			3	x 2 x FE	SP 38M	M	
	Водосток конде	нсатора										Ус	тановка	на мес	те							
Электропитание	Фаза / Частота /		ние	Гц/В									3N~/5									

- Компактная структура позволяет легко устанавливать или модифицировать блок в помещении
- Высокая эффективность в режиме полной и частичной нагрузки
- > Контроллер MicroTech III для эффективного управления и простого соединения с интерфейсами LonWorks, Bacnet, Ethernet TCP/IP или Modbus

СТАНДАРТНЫЙ

- › Стартер компрессора Звезда-Треугольник (y d)
- > Двойная уставка
- > Контроль фаз
- > Cоединение VICTAULIC для испарителя
- > Изоляция испарителя 20мм
- > Соединение VICTAULIC для конденсатора
- Расчетное давление на стороне конденсатора по воде 16 бар
- > Конденсатор двухходовой (4-8°C)
- > Реле протока испарителя
- > Электронный расширительный вентиль
- > Запорный вентиль на нагнетании
- > Запорный вентиль на всасывании
- > Счетчик рабочего времени
- > Контактор для общей неисправности
- > Блокировка главного выключателя
- > Аварийный останов
- Сброс уставки, ограничение нагрузки и аварийный сигнал на внешнем устройстве

ОПЦИИ

- > Тепловой насос (включая режим поддержания)
- > Рассольная версия (до -8°C)
- > Реле тепловой защиты компрессора
- > Контроль минимального/максимального напряжения
- > Электросчетчик
- > Конденсаторы для компенсации коэффициента мощности
- > Ограничение тока
- > Комплект фланцевого соединения для конденсатора
- > Изоляция конденсатора 20мм
- > Манометры стороны низкого давления
- > Резиновая антивибрационная опора
- > Звукоизоляционная система (компрессор)
- Предохранительный клапан на 2 значения давления с отводом
- > Автоматические выключатели компрессора
- > Комплект для транспортировки (контейнер)
- > Комплект для перевозки
- > Реле заземления
- Плавный старт
- > Резиновая антивибрационная опора
- Ресивер жидкости
- > Манометры стороны высокого давления
- Трубы конденсатора Cu-Ni 90-10

MicroTech III

винтовой

EWWD-J-SS

Только отопление и Только охлаждение Стандартная эффективность Стандартный уровень шума

				120	140	150	180	210	250	280	310	330	360	380	400	450	500	530	560
Ном.			кВт	120	146	154	177	207	255	284	309	333	356	385	415	463	512	540	568
Ном.			кВт	142	172	188	216	249	305	340	377	405	432	466	499	554	610	645	681
Способ											Бесступ	енчатое							
Минимальная пр	оизводит	ельность	%				25								12,5				
Охлаждение	Ном.		кВт	28,0	33,9	39,5	45,3	50,5	60,0	70,1	78,6	84,4	90	10	00	110	119	129	140
Нагрев	Ном.		кВт	32,9	40,1	46,4	53,5	59,57	71,68	80,75	92,88	99,9	107	113	119	131	143	152	162
				4,28	4,29	3,91	3,92	4,11	4,25	4,05	3,93	3,94	3,95	3,83	4,13	4,20	4,29	4,18	4,06
				4,51		4,20		4,28	4,68	4,01	4,32	4,35	4,50	4,31	4,65	4,74	4,83	4,73	4,33
				4,32	4,29	4,05	4,04	4,18	4,26	4,21	4,06	4,05	4,04	4,12	4,19	4,22	4,26	4,23	4,22
Блок	ВхШхГ		мм			102	0x913x2	684						200	0x913x2	684			
Блок			КГ	1177	1233	1334	1366	1416	1600	1607	2668	2700	2732	2782	2832	3016	3200	3207	3215
Эксплуатационн	плуатационный вес кг				1276	1378	1415	1473	1663	1675	2755	2792	2830	2888	2946	3136	3327	3338	3350
Тип										Пласти	нчатый,	один на	контур		,				
Объем воды			л	14	18	14	17	20	2	6	29	31	33	37	41	46		52	
Перепад давления	Охлаждение	Теплообменния	кПа	15	13	40	38	36	28	33	4	0	3	8	3	6	2	.8	33
Тип										Двухпро	ходной	кожухо	трубный	í					
Расход воды	Ном.		л/сек	7,04	8,57	9,25	10,62	12,30	15,06	16,89	18,49	19,91	21,28	23,15	24,59	27,33	30,10	31,92	33,78
Перепад давления	Охлажде	ние	кПа	20	12		11		16	26			1	1			1	6	26
Охлаждение	Ном.		дБА			88,6			87	7,2			92,4			91,8		91,0	
Охлаждение	Ном.		дБА			71,4			70),0			74,4			73,8		73,0	
Тип									Полуге	рметичн	ный одно	винтов	ой комг	прессор					
Испаритель	Охлаждение	Мин.~Макс.	°CDB								-10 ⁻	~15							
Конденсатор	Охлаждение	Мин.~Макс.	°CDB								23~	-60							
Тип		,									R-1.	34a							
Заправка			кг	18	20	33	34	36	3	8	66	67	68	70	72	74		76	
Контуры	Количес	тво		Ì			1								2				
Фаза / Частота /	Напряжеі	ние	Гц/В	Ì							3~/50)/400							
	Ном. Способ Минимальная пр Охлаждение Нагрев Блок Блок Блок Восплуатационн Тип Объем воды Перепад давления Охлаждение Охлаждение Охлаждение Охлаждение Охлаждение Тип Испаритель Конденсатор Тип Ваправка Контуры	Ном. Способ Минимальная производит Охлаждение Ном. Нагрев Ном. ВхШхГ Блок ВхШхГ Блок ВхШхГ Блок Охлаждение Ном. Перепад давления Охлаждение Пом. Перепад давления Охлаждение Ном.	Ном. Способ Минимальная производительность Охлаждение Ном. Нагрев Ном. Блок ВхШхГ Блок Вксплуатационный вес Гип Расход воды Ном. Перепад давления Охлаждение Ном. Перепад давления Охлаждение Ном. Перепад давления Охлаждение Ном. Перепад давления Охлаждение Ном. Охлаждение Ном. Кипаритель Охлаждение МинМакс. Конденсатор Охлаждение МинМакс. Конденсатор Охлаждение МинМакс. Конденсатор Охлаждение МинМакс. Каправка	Ном. КВТ Способ Минимальная производительность % Охлаждение Ном. КВТ Нагрев Ном. КВТ Блок ВхШхГ мм Блок ВхШхГ мм Блок Кг Охлаждение Ном. КВТ Охлаждение Пеппобмения КПа Перепад давления Охлаждение Пеппобмения Пререпад давления Охлаждение КПа Охлаждение Ном. дБА Охлаждение Ном. дБА Охлаждение Ном. дБА Тип Испаритель Охлаждение МинМакс. °CDB Конденсатор Охлаждение МинМакс. °CDB Тип Охлаждение Ном. дБА Тип Охлаждение МинМакс. °CDB Тип Охлаждение МинМакс. °CDB Тип Охлаждение МинМакс. °CDB Тип Охлаждение МинМакс. °CDB Тип Охлаждение МинМакс. °CDB Тип Охлаждение Конденсатор Охлаждение МинМакс. °CDB Тип Охлаждение Конденсатор Охлаждение МинМакс. °CDB	Ном. КВТ 142 Способ Минимальная производительность 96 Охлаждение Ном. КВТ 28,0 Нагрев Ном. КВТ 32,9 4,28 4,51 4,32 Блок ВхШхГ мм Блок Кг 1177 Оксплуатационный вес Кг 1211 Ппо Объем воды Перепад давления Охлаждение Геплообмения КПа 15 Гип Объем воды Ном. Л/сек 7,04 Перепад давления Охлаждение КПа 20 Охлаждение Ном. ДБА Охлаждение Ном. ДБА Гип Оклаждение Ном. ДБА Гип Оклаждение МинМак. °CDB Гип Оклаждение МинМак. °CDB Гип Оклаждение МинМак. °CDB Гип Оклаждение МинМак. °CDB Гип Оклаждение МинМак. °CDB Гип Оклаждение МинМак. °CDB Гип Оклаждение МинМак. °CDB Гип Оклаждение КГ 18	ном. кВт 142 172 Способ Минимальная производительность % Охлаждение Ном. кВт 28,0 33,9 4,01 4,28 4,29 4,51 4,32 4,29 5лок ВхШхГ мм Боголуатационный вес кг 1117 1233 Способ кг 11211 1276 Обраем воды Перепад давления Охлаждение Геллообмения КПа 15 13 Гип Обраем воды Ном. л/сек 7,04 8,57 Осколаждение Ном. дБА Охлаждение Ном. дБА Охлаждение Ном. дБА Гип Оклаждение Ном. дБА Гип Оклаждение Ном. дБА Гип Оклаждение МинМакс °CDB Гип Оклаждение МинМакс °CDB Гип Оклаждение МинМакс °CDB Гип Оклаждение МинМакс °CDB Гип Оклаждение МинМакс °CDB Гип Оклаждение МинМакс °CDB Гип Оклаждение МинМакс °CDB Гип Оклаждение МинМакс °CDB Гип Оклаждение КГ 18 20	ном. кВт 142 172 188 Способ Минимальная производительность % Охлаждение Ном. кВт 28,0 33,9 39,5 Нагрев Ном. кВт 32,9 40,1 46,4 4,28 4,29 3,91 4,51 4,20 4,32 4,29 4,05 Блок ВхШхг мм 1177 1233 1334 Оксплуатационный вес кг 1211 1276 1378 Перепад давления Охлаждение Теппобиения кПа 15 13 40 Перепад давления Охлаждение кПа 20 12 Охлаждение Ном. дБА 71,4 Пип Испаритель Охлаждение МинМакс °CDB Кип Оконденсатор Охлаждение МинМакс °CDB Кип Оконденсатор Охлаждение МинМакс °CDB Кип Оконденсатор Охлаждение МинМакс °CDB Кип Оконденсатор Охлаждение МинМакс °CDB Кип Оконденсатор Охлаждение МинМакс °CDB Кип Оконденсатор Охлаждение МинМакс °CDB Кип Оконденсатор Охлаждение МинМакс °CDB Кип Оконденсатор Охлаждение МинМакс °CDB Кип Оконденсатор Охлаждение МинМакс °CDB Кип Оконденсатор Охлаждение МинМакс °CDB Кип Оконденсатор Охлаждение МинМакс °CDB Кип Оконденсатор Охлаждение МинМакс °CDB	ном. кВт 142 172 188 216 Способ Минимальная производительность 96 Охлаждение Ном. кВт 28,0 33,9 39,5 45,3 Нагрев Ном. кВт 32,9 40,1 46,4 53,5 4,28 4,29 3,91 3,92 4,51 4,20 4,32 4,29 4,05 4,04 5лок ВхШхг мм 1020х913х2 5лок ВхШхг мм 1177 1233 1334 1366 Охлаждение кг 1117 1276 1378 1415 Верепад давления Охлаждение Теплообмения кПа 15 13 40 38 Тип Объем воды Пом. раскод воды Ном. п/сек 7,04 8,57 9,25 10,62 Тарепад давления Охлаждение КПа 20 12 11 Охлаждение Ном. дБА 88,6 Охлаждение Ном. дБА 71,4 Тип Оклаждение МинМакс. °CDB Конденсатор Охлаждение МинМакс. °CDB Тип Оклаждение МинМакс. °CDB	ном. кВт 142 172 188 216 249 Способ Минимальная производительность 96 25 Охлаждение Ном. кВт 28,0 33,9 39,5 45,3 50,5 Нагрев Ном. кВт 32,9 40,1 46,4 53,5 59,57 4,28 4,29 3,91 3,92 4,11 4,51 4,20 4,28 4,32 4,29 4,05 4,04 4,18 Блок ВхШхг мм 1020х913х2584 Блок ВхШхг мм 11271 1233 1334 1366 1416 Охлаждение Велообменняя кПа 15 13 40 38 36 Перепад давления Охлаждение Пелообменняя кПа 15 13 40 38 36 Поток Воскол воды Ном. дСко 7,04 8,57 9,25 10,62 12,30 Перепад давления Охлаждение КПа 20 12 11 Охлаждение Ном. дБА 71,4 Тип Испаритель Охлаждение МинМакс. °CDB Конденсатор Охлаждение МинМакс. °CDB Конденсатор Охлаждение МинМакс. °CDB Кип КГ 18 20 33 34 36 Контуры Количество 1 1	ном. кВт 142 172 188 216 249 305 Способ Минимальная производительность 96 25 Охлаждение Ном. кВт 28,0 33,9 39,5 45,3 50,5 60,0 14агрев Ном. кВт 32,9 40,1 46,4 53,5 59,57 71,68 4,28 4,29 3,91 3,92 4,11 4,25 4,51 4,20 4,28 4,68 4,29 3,91 3,92 4,11 4,25 4,51 4,20 4,28 4,68 4,29 4,05 4,04 4,18 4,26 5,00 K ВХШХГ ММ 1020х913х2684 5,00 К КГ 1177 1233 1334 1366 1416 1600 5,00 К КГ 111 1276 1378 1415 1473 1663 5,00 K КГ 111 1276 1378 1415 1473 1663 5,00 K КГ 111 1276 1378 1415 1473 1663 5,00 K КГ 111 1276 1378 1415 1473 1663 5,00 K КГ 111 1276 1378 1415 1473 1663 5,00 K КГ 111 1276 1378 1415 1473 1663 5,00 K КГ 111 1276 1378 1415 1473 1663 5,00 K КГ 111 1276 1378 1415 1473 1663 5,00 K КГ 111 1276 1378 1415 1473 1663 5,00 K КГ 111 1276 1378 1415 1473 1663 5,00 K КГ 111 1276 1378 1415 1473 1663 5,00 K КГ 111 1276 1378 1415 1473 1663 5,00 K КГ 111 1276 1378 1415 1473 1663 5,00 K КГ 111 1276 1378 1415 1473 1663 5,00 K КГ 111 1276 1378 1415 1473 1663 5,00 K KГ 111 1276 1378 1415 1473 1663 5,00 K KГ 111 1276 1378 1415 1473 1663 5,00 K KГ 111 1276 1378 1415 1473 1663 5,00 K KГ 111 1276 1378 1415 1473 1663 5,00 K KГ 111 1276 1378 1415 1473 1663 5,00 K KГ 111 1276 1378 1415 1473 1663 5,00 K KГ 111 1276 1378 1415 1473 1663 5,00 K KГ 111 1276 1378 1415 1473 1663 5,00 K KГ 111 1276 1378 1415 1473 1478 1478 1478 1478 1478 1478 1478 1478	ном. кВт 142 172 188 216 249 305 340 Способ Минимальная производительность 96 25 Охлаждение Ном. кВт 28,0 33,9 39,5 45,3 50,5 60,0 70,1 Нагрев Ном. кВт 32,9 40,1 46,4 53,5 59,57 71,68 80,75 4,28 4,29 3,91 3,92 4,11 4,25 4,05 4,32 4,29 4,05 4,04 4,18 4,26 4,21 Блок ВхШхг мм 1020x913x2684 Кг 1177 1233 1334 1366 1416 1600 1607 Охлаждение волобиения кПа 15 13 40 38 36 28 33 Кип Такрепад давления Охлаждение волобиения кПа 15 13 40 38 36 28 33 Кип Такрепад давления Охлаждение кПа 20 12 11 166 26 Охлаждение Ном. дБА 88,6 87,2 Охлаждение Ном. дБА 71,4 70,0 Тип Толождение Ном. дБА 71,4 70,0 Тип Толождение МинМакс. СОВ Конценстор Охлаждение МинМакс. СОВ Конденстор Охлаждение МинМакс. СОВ Конденсторо Охлаждение МинМакс. СОВ Конденсторо Охлаждение МинМакс. СОВ Конденсторо Охлаждение МинМакс. СОВ Конденсторо Охлаждение МинМакс. СОВ Конденсторо Охлаждение МинМакс. КГ 18 20 33 34 36 38 38	ном. кВт 142 172 188 216 249 305 340 377 Бесступи Способ Минимальная производительность % Охлаждение Ном. кВт 28,0 33,9 39,5 45,3 50,5 60,0 70,1 78,6 Нагрев Ном. кВт 32,9 40,1 46,4 53,5 59,57 71,68 80,75 92,88 4,29 3,91 3,92 4,11 4,25 4,05 3,93 4,51 4,20 4,28 4,68 4,01 4,32 4,29 4,05 4,04 4,18 4,26 4,21 4,06 5лок ВхШхГ мм 1020х913х2684 Блок ВхШхГ мм 1177 1233 1334 1366 1416 1600 1607 2668 50хсплуатационный вес кг 1211 1276 1378 1415 1473 1663 1675 2755 170 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ном. кВт 142 172 188 216 249 305 340 377 405 Бесступенчатовой образовательность м в только образовательного образовательность м в только образовательного о	ном. кВт 142 172 188 216 249 305 340 377 405 432 бестуленчатое Минимальная производительность % 25 50хлаждение Ном. кВт 28,0 33,9 39,5 45,3 50,5 60,0 70,1 78,6 84,4 90 10 1 10 10 10 10 10 10 10 10 10 10 10	Ном. КВт 142 172 188 216 249 305 340 377 405 432 466 Способ МИНИМАЛЬНАЯ ПРОИЗВОДИТЕЛЬНОСТЬ № 25 ОХЛАЖДЕНИЕ НОМ. КВТ 28,0 33,9 39,5 45,3 50,5 60,0 70,1 78,6 84,4 90 11 11 11 11 11 11 11 11 11 11 11 11 11	Ном. КВТ 142 172 188 216 249 305 340 377 405 432 466 499 170 170 170 170 170 170 170 170 170 170	NBT 142 172 188 216 249 305 340 377 405 432 466 499 554 555 555 555 555 555 555 555 555	Ном.	Ном.

- Все модели соответствуют положениям Европейской директивы безопасности оборудования, работающего под давлением (PED)
- Одновинтовой компрессор с плавным регулированием производительности
- > Оптимизирован для работы с хладагентом R-134a
- > 1-2 полностью независимых контура охлаждения
- > Электронный расширительный вентиль
- Кожухотрубный испаритель DX один ход по хладагенту для облегчения циркуляции и возврата масла
- Имеется опция с частичной или полной рекуперацией теплоты
- > Контроллер MicroTech III для эффективного управления и простого соединения с интерфейсами LonWorks, Bacnet, Ethernet TCP/IP или Modbus

СИСТЕМА СТАНДАРТНОЙ УСТАНОВКИ

- > Стартер компрессора Звезда-Треугольник (y d)
- > Двойная уставка
- > Контроль фаз
- > Cоединение VICTAULIC для испарителя
- Расчетное давление на стороне испарителя по воде - 10 бар
- Расчетное давление на стороне конденсатора по воде - 16 бар
- > Электронный расширительный вентиль
- > Запорный вентиль на всасывании
- > Запорный вентиль на нагнетании
- > Аварийный останов
- > Блокировка главного выключателя
- Сброс уставки, ограничение нагрузки и аварийный сигнал на внешнем устройстве
- > Счетчик рабочего времени
- > Контактор для общей неисправности
- > Конденсатор одноходовой (4-8°C)

ОПЦИИ (УСТАНАВЛИВАЕМЫЕ НА ЗАВОДЕ)

- > Полная рекуперация теплоты
- Частичная рекуперация теплоты
- > Плавный старт
- > Тепловой насос (включая режим поддержания)
- > Рассольная версия (до -8°C)
- Реле тепловой защиты компрессора
- > Контроль минимального/максимального напряжения
- > Электросчетчик
- > Конденсаторы для компенсации коэффициента мощности
- > Ограничение тока
- > Комплект фланцевого соединения для конденсатора
- > Изоляция испарителя 20мм
- > Изоляция конденсатора 20мм
- > Cоединение VICTAULIC для конденсатора
- > Трубы конденсатора Cu-ni 90-10
- Реле протока испарителя
- Резиновая антивибрационная опора
- > Звукоизоляционная система (компрессор)
- Предохранительный клапан на 2 значения давления с отводом
- > Манометры стороны высокого давления
- Манометры стороны низкого давления
- > Реле заземления
- Комплект для транспортировки (контейнер)
- > Комплект для перевозки
- > Комплект фланцевого соединения для испарителя

MicroTech III

EWWD260G-SS

Только отопление и Только охлаждение

Модель				170	210	260	300	320	380	420	460	500	600				
Холодопроизводительность	Ном.		кВт	165	200	252	279	332	370	401	446	492	554				
Теплопроизводительность	Ном.		кВт	221	266	336	376	443	492	534	596	659	747				
Регулирование	Способ							Бесступ	енчатое								
производительности	Минимальная про	изводительность	%		2	5				1	3						
Потребляемая	Охлаждение	Ном.	кВт	43,8	52,6	67,4	78,5	87,5	96,4	105,4	119,3	133,9	157				
мощность	Нагрев	Ном.	кВт	55,6	66,8	85,4	99,3	111	122	134	152	170	198				
EER				3,77	3,80	3,74	3,55	3,80	3,84	3,80	3,74	3,68	3,53				
ESEER				4,46	4,47	4,41	4,15	4,66	4,71	4,65	4,60	4,50	4,29				
COP				3,97	3,99	3,93	3,78	3,99	4,02	3,99	3,93	3,88	3,77				
Размеры	Блок	ВхШхГ	мм		1860x92	20x3435				1880x8	60x4305						
Bec	Блок		кг	1393	1410	15	03	2687	2697	2702	2757	27	62				
	Эксплуатационны	й вес	кг	1470	1480	16	550	2840	2850	2860		2970					
Водяной	Тип						Oį	дноходовой н	кожухотрубн								
теплообменник -	Объем воды		л	60	56	1	23	118	1	13	173	10	58				
испаритель	Перепад давления	Охлаждение Итого	кПа	45	61	41	49	58	57	66	5	50	59				
Водяной	Тип						Oį	дноходовой н	кожухотрубн	ый							
теплообменник -	Расход воды	Ном.	л/сек	10,0	12,1	15,3	17,1	10,1	10,2	12,2	12,4	15,0	17,0				
конденсатор	Перепад давления	Охлаждение	кПа	38	39	60	73	37	38	39	41	57	70				
	Перепад давления 2	Охлаждение	кПа			-		37	3	9	56	57	70				
Компрессор	Тип						Полугерм	етичный одн	овинтовой к	омпрессор							
	Количество					1					2						
Уровень звуковой мощности	Охлаждение	Ном.	дБА		8	8				ç	90						
Уровень звукового давления	Охлаждение	Ном.	дБА		7	0				7	'2						
Рабочий	Испаритель	Охлаждение Мин.~Макс.	°CDB					-8-	~15								
диапазон	Конденсатор	Охлаждение Мин.~Макс.	°CDB					20-	~55								
Хладагент	Тип							R-1	34a								
	Заправка		кг	5	0	5	5	110	5	0	5	55	110				
	Управление						Электр	онный расші	ирительный і	вентиль							
	Контуры	Количество				1	•	· ·			2						
Электропитание	Фаза / Частота / На	пряжение	Гц/В					3~/5	0/400								

- > Максимальная эффективность
- Все модели соответствуют положениям Европейской директивы безопасности оборудования, работающего под давлением (PED)
- Одновинтовой компрессор с плавным регулированием производительности
- > Оптимизирован для работы с хладагентом R-134a
- 1-2 полностью независимых контура охлаждения
- > Электронный расширительный вентиль
- Кожухотрубный испаритель DX один ход по хладагенту для облегчения циркуляции и возврата масла
- Имеется опция с частичной или полной рекуперацией теплоты
- > Контроллер MicroTech III для эффективного управления и простого соединения с интерфейсами LonWorks, Bacnet, Ethernet TCP/IP или Modbus

СИСТЕМА СТАНДАРТНОЙ УСТАНОВКИ

- > Стартер Звезда-Треугольник
- > Двойная уставка
- > Контроль фаз
- > Cоединение VICTAULIC для испарителя
- Расчетное давление на стороне испарителя по воде - 10 бар
- Расчетное давление на стороне конденсатора по воде - 16 бар
- > Электронный расширительный вентиль
- > Запорный вентиль на всасывании
- · Счетчик рабочего времени
- Контактор для общей неисправности
- Конденсатор одноходовой (4-8°С)
- > Запорный вентиль нагнетательной линии
- Сброс уставки, ограничение нагрузки и аварийный сигнал на внешнем устройстве
- > Блокировка главного выключателя
- > Аварийный останов

ОПЦИИ (УСТАНАВЛИВАЕМЫЕ НА ЗАВОДЕ)

- > Полная рекуперация теплоты
- Частичная рекуперация теплоты
- > Плавный старт
- > Тепловой насос (включая режим поддержания)
- > Рассольная версия
- Реле тепловой защиты компрессора
- > Контроль минимального/максимального напряжения
- > Электросчетчик
- > Конденсаторы для компенсации коэффициента мощности
- > Ограничение тока
- > Комплект фланцевого соединения для конденсатора
- > Изоляция испарителя 20мм
- > Изоляция конденсатора 20мм
- > Cоединение VICTAULIC для конденсатора
- > Трубы конденсатора Cu-ni 90-10
- Реле протока испарителя
- > Резиновая антивибрационная опора
- > Звукоизоляционная система (компрессор)
- Предохранительный клапан на 2 значения давления с отводом
- > Манометры стороны высокого давления
- > Манометры стороны низкого давления
- > Реле заземления
- > Комплект для транспортировки (контейнер)
- > Комплект для перевозки
- > Комплект фланцевого соединения для испарителя

MicroTech III

EWWD650G-XS

Только отопление и Только охлаждение

Модель					190	230	280	320	380	400	460	500	550	650					
Холодопроизводительность	Ном.			кВт	185	222	276	306	365	407	443	495	539	602					
Теплопроизводительность	Ном.			кВт	238	286	355	400	470	523	569	634	693	785					
Регулирование	Способ								Бесступ	енчатое									
производительности	Минимальная про	оизводител	іьность	%		2	5				1	3							
Потребляемая	Охлаждение	Мин.		кВт	40,6	49,4	61,0	73,3	81,1	89,0	97,0	107,3	117,4	141					
мощность	Нагрев	Ном.		кВт	51,7	62,9	77,7	93,4	103	114	124	137	150	180					
EER					4,57	4,50	4,53	4,17	4,50	4,58	4,57	4,61	4,59	4,26					
ESEER					5,53	5,43	5,46	5,02	5,69	5,82	5,81	5,83	5,80	5,36					
COP					4,61	4,55	4,57	4,29	4,55	4,61	4,6	4,64	4,63	4,37					
Размеры	Блок	ВхШхГ		мм		1860x9	20x3435				1880x8	60x4305							
Bec	Блок			кг	1650	1665	16	580	2800	2945	2955	2975	29	90					
	Эксплуатационны	й вес		кг	1800	1810	18	320	3020	3280	3290	3315							
Водяной	Тип							Oį	дноходовой і	кожухотрубн	ый		3315 3340						
теплообменник -	Объем воды			л	125	120	1	10	170	2	85		280						
испаритель	Перепад давления	Охлаждение	Итого	кПа	23	31	30	37	28	21	24	33	39	47					
Водяной	Тип							Oį	цноходовой і	кожухотрубн	ый		2990 3340 280 39 15,8 1						
теплообменник -	Расход воды	Ном.		л/сек	10,9	13,1	16,2	18,2	10,7	10,9	13,0	13,2	15,8	17,9					
конденсатор	Перепад давления	Охлажден	ние	кПа	16	18	22	27		1	5		14	17					
	Перепад давления 2	Охлажден	ние	кПа			-			15		1	4	17					
Компрессор	Тип							Полугерм	етичный одн	овинтовой к	омпрессор								
	Количество						1					2							
Уровень звуковой мощности	Охлаждение	Ном.		дБА		8	8				9	90							
Уровень звукового давления	Охлаждение	Ном.		дБА		7	0				7	'2							
Рабочий	Испаритель	Охлаждение	Мин.~Макс.	°CDB					-8-	-15									
диапазон	Конденсатор	Охлаждение	Мин.~Макс.	°CDB					20 [,]	~55									
Хладагент	Тип								R-1	34a									
	Заправка			кг		5	5		110	105		10	00						
	Управление							Электр	онный расші	рительный і	вентиль								
	Контуры	Количест	во				1					2							
Электропитание	Фаза / Частота / На	апряжение	•	Гц/В					3~/5	0/400									

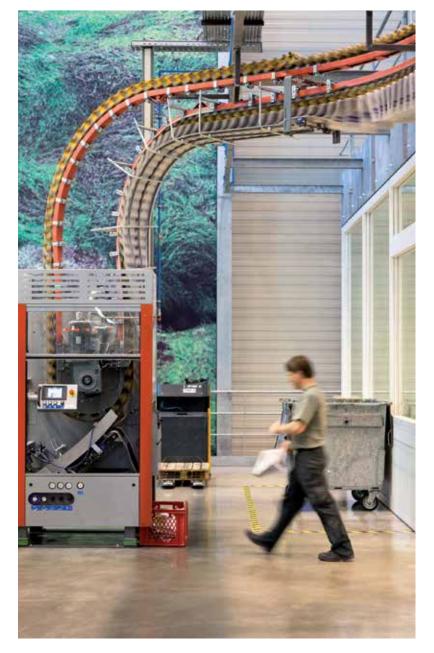
- Все модели соответствуют положениям Европейской директивы безопасности оборудования, работающего под давлением (PED)
- Одновинтовой компрессор с плавным регулированием производительности
- > Оптимизирован для работы с хладагентом R-134a
- > 1-2-3 полностью независимых контура охлаждения
- > Электронный расширительный вентиль
- Кожухотрубный испаритель DX один ход по хладагенту для сведения к минимуму потерь давления
- Имеется опция с частичной или полной рекуперацией теплоты
- > Koнтроллер MicroTech III для эффективного управления и простого соединения с интерфейсами LonWorks, Bacnet, Ethernet TCP/IP или Modbus

СИСТЕМА СТАНДАРТНОЙ УСТАНОВКИ

- Стартер компрессора Звезда-Треугольник (у d)
- > Двойная уставка
- > Контроль фаз
- > Cоединение VICTAULIC для испарителя
- Расчетное давление на стороне испарителя по воде - 10 бар
- Расчетное давление на стороне конденсатора по воде - 16 бар
- > Электронный расширительный вентиль
- > Счетчик рабочего времени
- > Контактор для общей неисправности
- Сброс уставки, ограничение нагрузки и аварийный сигнал на внешнем устройстве
- > Конденсатор одноходовой (4-8°C)
- > Блокировка главного выключателя
- > Аварийный останов

ОПЦИИ (УСТАНАВЛИВАЕМЫЕ НА ЗАВОДЕ)

- > Полная рекуперация теплоты
- Уастичная рекуперация теплоты
- > Плавный старт
- > Тепловой насос (включая режим поддержания)
- Рассольная версия (до -8°С)
- > Контроль минимального/максимального напряжения
- > Электросчетчик
- > Конденсаторы для компенсации коэффициента мощности
- > Ограничение тока
- > Комплект фланцевого соединения для конденсатора
- > Изоляция испарителя 20мм
- > Изоляция конденсатора 20мм
- > Cоединение VICTAULIC для конденсатора
- Трубы конденсатора Cu-ni 90-10
- > Конденсатор двухходовой (9-15°C)
- Реле протока испарителя
- > Запорный вентиль на нагнетании
- > Запорный вентиль на всасывании
- Комплект для транспортировки (контейнер)
- Резиновая антивибрационная опора
- > Звукоизоляционная система (интегральная)
- Предохранительный клапан на 2 значения давления с отводом
- > Комплект для перевозки
- > Реле заземления
- Реле тепловой защиты компрессора
- > Манометры высокого давления
- > Манометры низкого давления
- > Комплект фланцевого соединения для испарителя



MicroTech III

винтовой

Только отопление и Только охлаждение

Модель				340	400	460	550	650	700	800	850	900	950	C10	C12	C13	C14	C15	C16	C17	C18
Холодопроизводительность	Ном.		кВт	332	392	458	536	637	703	779	841	907	982	1024	1151	1200	1270	1341	1395	1449	1503
Теплопроизводительность	Ном.		кВт	424	503	588	689	820	903	999	1079	1163	1261	1324	1477	1543	1632	1724	1800	1875	1951
Регулирование	Способ						Бесс	тупенч	атое								Бессту	пенчат	oe		
производительности	Минимальная про	оизводительность	%		2	25					13							8			
Потребляемая	Охлаждение	Ном.	кВт	73,5	88,6	104,2	124,3	145,7	160,3	176,4	191,1	205,4	224,7	242,6	261,6	275,1	289,8	307,0	325,5	344,3	363
мощность	Нагрев	Ном.	кВт	91,4	109	129	152	181	199	218	236	254	276	297	324	341	359	380	401	422	444
EER				4,51	4,43	4,39	4,31	4,37	4,38	4,41	4,40	4,42	4,37	4,22	4,40	4,36	4,38	4,37	4,29	4,21	4,14
ESEER				4,71	4,57	4,53	4,47	5,04	5,27	5,06	5,19	5,05	5,15	5,00	5,05	5,09	5,13	5,06	5,05	4,96	4,79
COP				4,64	4,6	4,57	4,54	4,52	4,54	4,58	4,57	4,58	4,57	4,46	4,57	4,53	4,55	4,54	4,49	4,44	4,4
Размеры	Блок	ВхШхГ	мм	1	821x14	66x329	8		2103	x1350x	4116		2103x13	50x4116			2323	x2130x	4439		
Bec	Блок		кг	2150	2160	2179	2224	3909	3927	3945	3971	3996	4080	4092	6079	6097	6136	6174	6192	6210	6228
	Эксплуатационны	луатационный вес кг			2396	2410	2457	4217	4228	4243	4262	4288	4369	4386	6628	6646	6670	6699	6717	6735	6761
Водяной	Тип					Одно	оходов	ой кож	ухотру(бный						Одно	оходов	ой кожу	ухотруб	ный	
теплообменник -	Объем воды		л	19	93	183	172	271	263	256	248	241	23	33	472	504	489		47	72	
испаритель	Перепад давления	Охлаждение Теплообменник	кПа	37	50	54	62	55	44	57	53	44	54	39	52	55	46	57	62	66	71
Водяной	Тип					Одно	оходов	ой кож	ухотруб	бный						Одно	оходов	ой кожу	ухотруб	бный	
теплообменник -	Расход воды	Ном.	л/сек	19,5	23,1	27,0	31,7	18,8	19,1	23,0	23,2	26,8	27,2	30,5	22	2,6	22,9		26,4		29,9
конденсатор	Перепад давления	Охлаждение	кПа	26	28	30	26	2	5	27	28	26	22	23	2	.4	25		24		23
	Перепад давления 2	Охлаждение	кПа			-		25	26	27	2	6	2	3	2	.4	23	2	4	2	3
Компрессор	Тип								По	элугери	иетичн	ый одн	ОВИНТО	вой ког	ипресс	ор					
	Количество					1					2							3			
Уровень звуковой мощности	Охлаждение	Ном.	дБА	94			97			98	99	100		100		10	01		10	03	
Уровень звукового давления	Охлаждение	Ном.	дБА	75	76		7	'8		79	80	81	8	1	80	8	1		8	3	
Рабочий	Испаритель	Охлаждение Мин.~Макс.	°CDB									-8~	-15								
диапазон	Конденсатор	Охлаждение Мин.~Макс.	°CDB									20-	~55								
Хладагент	Тип											R-1	34a								
	Контуры	Количество				1					2							3			
Контур охлаждения	Заправка		кг	54	52	51	50	108	106			104			156	155	154	153	152	151	150
Электропитание	Фаза / Частота / Н	апряжение	Гц/В									3~/50	0/400								
		-																			

- > Максимальная эффективность
- Все модели соответствуют положениям Европейской директивы безопасности оборудования, работающего под давлением (PED)
- Одновинтовой компрессор с плавным регулированием производительности
- > Оптимизирован для работы с хладагентом R-134a
- > 1 или 2 полностью независимых контура охлаждения
- > Электронный расширительный вентиль
- Кожухотрубный испаритель DX один ход по хладагенту для сведения к минимуму потерь давления
- > Контроллер MicroTech III для эффективного управления и простого соединения с интерфейсами LonWorks, Bacnet, Ethernet TCP/IP или Modbus

- > Стартер компрессора Звезда-Треугольник (y d)
- > Двойная уставка
- Контроль фаз
- > Cоединение VICTAULIC для испарителя
- Расчетное давление на стороне испарителя по воде - 10 бар
- Расчетное давление на стороне конденсатора по воде - 16 бар
- > Конденсатор двухходовой (4-8°C)
- Электронный расширительный вентиль
- > Счетчик рабочего времени
- > Контактор для общей неисправности
- Сброс уставки, ограничение нагрузки и аварийный сигнал на внешнем устройстве
- > Аварийный останов
- > Блокировка главного выключателя

ОПЦИИ (УСТАНАВЛИВАЕМЫЕ НА ЗАВОДЕ)

- > Частичная рекуперация теплоты
- > Плавный старт
- > Тепловой насос (включая режим поддержания)
- Рассольная версия (до -8°С)
- > Контроль минимального/максимального напряжения
- > Электросчетчик
- > Конденсаторы для компенсации коэффициента мощности
- > Ограничение тока
- Комплект фланцевого соединения для конденсатора
- Изоляция испарителя 20мм
- > Изоляция конденсатора 20мм
- > Cоединение VICTAULIC для конденсатора
- Трубы конденсатора Cu-ni 90-10
- > Конденсатор 4-х ходовой
- > Реле протока испарителя
- > Запорный вентиль на нагнетании
- > Запорный вентиль на всасывании
- > Комплект для транспортировки (контейнер)
- Резиновая антивибрационная опора
- Звукоизоляционная система (интегральная)
- Предохранительный клапан на 2 значения давления с отводом
- > Манометры стороны высокого давления
- > Манометры стороны низкого давления
- Реле заземления
- Комплект для перевозки
- > Комплект фланцевого соединения для испарителя
- Реле тепловой защиты компрессора
- > Контроль фаз

MicroTech III

Только отопление и Только охлаждение

Модель					360	440	500	600	750	800	850	950	C10	C11	C12	
Холодопроизводительность	Ном.			кВт	360	431	504	570	717	791	863	929	971	1035	1130	
Теплопроизводительность	Ном.			кВт	454	543	635	728	904	997	1086	1171	1232	1319	1441	
Регулирование	Способ						Бесстуг	енчатое			Бе	есступенчат	oe			
производительности	Минимальная про	изводител	ьность	%		2	.5		1	3			13			
Потребляемая	Охлаждение	Ном.		кВт	74,5	89,5	104,5	126,8	147,9	163,4	177,8	193,1	208,4	228,3	250	
мощность	Нагрев	Ном.		кВт	92	110	128	155	183	201	218	237	256	280	306	
EER					4,83	4,	82	4,50	4,85	4,84	4,85	4,81	4,66	4,53	4,51	
ESEER					4,75	4,72	4,71	4,52	5,40	5,50	5,35	5,40	5,18	5,37	5,02	
COP					4,94	4,	95	4,7	4,95	4,96	4,97	4,94	4,81	4,	71	
Размеры	Блок	ВхШхГ		мм		1883x14	30x4012		2245x13	50x4782		22	245x1350x47	782		
Bec	Блок	,		кг	2594	2667	27	704	4964	4997	5049	5073			32	
	Эксплуатационны	й вес		кг	2998	3078	31	116	5582	5615	5671	5695	5729	57	'41	
Водяной	Тип		Одноходовой кожухотрубный Одноходовой к								отрубный					
теплообменник -	Объем воды			Л	326	317	3	08	5	39		528		504	04	
испаритель	Перепад давления	Охлаждение	Теплообменник	кПа	6	54	54	68	58	68	56	64	72	46	52	
Водяной	Тип					Оді	ноходовой	кожухотруб	ный			Одноход	овой кожух	5097 51: 5729 574 й кожухотрубный 50 72 46 й кожухотрубный 28,3 50 51		
теплообменник -	Расход воды	Ном.		л/сек	20,9	25,0	29,2	33,4	20,8	21,0	25	5,0	одовой кожухотрубный 28,3	33,1		
конденсатор	Перепад давления	Охлажден	ние	кПа	48	47	51	66	4	8	4	17	50	51	65	
	Перепад давления 2	Охлажден	ние	кПа			-		48	47	47	5	50	6	5	
Компрессор	Тип					Полугерме	гичный одн	овинтовой	компрессор)	Полугерметичный одновинтовой компрессор					
	Количество						1			2			2	1035 1319 гое 228,3 280 4,53 5,37 4,7 782 513 574 46 котрубный 8,3 51 65 говой компре		
Уровень звуковой мощности	Охлаждение	Ном.		дБА	94			97			98	99		100		
Уровень звукового давления	Охлаждение	Ном.		дБА	75	76		7	'8		79	80		81		
Рабочий	Испаритель	Охлаждение	Мин.~Макс.	°CDB			-8-	~15					-8~15			
диапазон	Конденсатор	Охлаждение І	Мин.~Макс.	°CDB			20	~55					20~55			
Хладагент	Тип						R-1	34a					R-134a			
	Контуры	Количеств	30				1			2			2			
Контур охлаждения	Заправка			кг	90	87	3	35	180	177	174					
Электропитание	Фаза / Частота / На	эпряжение	!	Гц/В			3~/5	0/400					3~/50/400			

EWWD-H-XS

ПРЕИМУЩЕСТВА

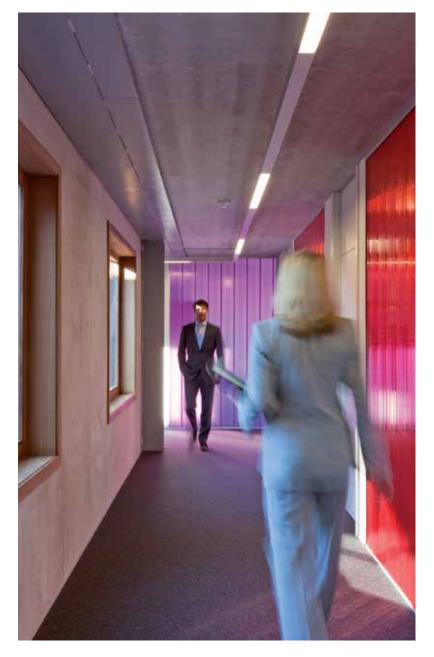
- > Eurovent Класс A
- > Температура воды на выходе конденсатора (CLWT) до 50°C
- > В наличии тепловой насос
- > Теплообменники затопленного типа
- Контроллер Microtech III с усовершенствованными алгоритмами управления и удобным интерфейсом пользователя

СИСТЕМА СТАНДАРТНОЙ УСТАНОВКИ

- > Стартер компрессора Звезда-Треугольник (y d)
- > Двойная уставка
- > Контроль фаз
- > Cоединение VICTAULIC для испарителя
- Расчетное давление на стороне испарителя по воде - 10 бар
- > Изоляция испарителя 20мм
- > Cоединение VICTAULIC для конденсатора
- Расчетное давление на стороне конденсатора по воде - 10 бар
- > Конденсатор двухходовой (4-8°C)
- > Электронный расширительный вентиль
- > Запорный вентиль на нагнетании
- > Счетчик рабочего времени
- > Контактор для общей неисправности
- Сброс уставки, ограничение нагрузки и аварийный сигнал на внешнем устройстве
- > Блокировка главного выключателя
- > Аварийный останов
- > Испаритель двухходовой
- Предохранительный клапан на 2 значения давления с отводом

ОПЦИИ

- > Версия с тепловым насосом
- > Рассольная версия (до -8°C)
- > Комплект для бокового подсоединения труб (victaulic или фланцевый) к испарителю (1/2/3-хода)
- Трубы конденсатора Cu-Ni 90-10
- Конденсатор одноходовой (4-8°С)
- > Конденсатор 3-х ходовой
- > Запорный вентиль всасывающей линии
- > Манометры стороны высокого/низкого давления
- Эвукоизоляционная система (интегральная)
- > Испаритель 1/3-ходовой
- > Высокотемпературный комплект
- > Плавный старт
- > Реле тепловой защиты компрессора
- Регулирование минимального/максимального напряжения
- Электросчетчик
- > Конденсаторы для компенсации коэффициента мощности
- > Ограничение тока
- Дифференциальное реле давления воды на конденсаторе/испарителе
- > Реле протока испарителя/конденсатора
- > Автоматические выключатели компрессора
- Реле заземления
- > Резиновая антивибрационная опора
- Комплект для транспортировки (контейнер)
- > Комплект для перевозки
- > Комплект фланцевого соединения для конденсатора
- > Комплект фланцевого соединения для испарителя
- > Изоляция конденсатора 20мм



MicroTech III

EWWD-H-

Только отопление и Только охлаждение

Модель					370	450	530	610	750	830
Холодопроизводительность	Ном.			кВт	368	444	520	606	746	825
Теплопроизводительность	Ном.			кВт	454	547	639	746	918	1015
Регулирование	Способ						Бесступ	енчатое		
производительности	Минимальная п	роизводит	ельность	%		2	25,0		10	2,5
Потребляемая	Охлаждение	Ном.		кВт	63,9	76,6	88,3	103	127	140
мощность	Нагрев	Ном.		кВт	82,7	99,2	114	132	164	181
EER					5,75	5,79	5,88	5,90	5,85	5,88
ESEER					6,11	6,18	6,27	6,25	6,76	6,87
COP					5,5	5,52	5,61	5,64	5,59	5,61
Размеры	Блок	ВхШхГ		мм	2121x13	353x3341	2121x1353x3419	2048x1384x3417	2048x16	89x3609
Bec	Блок			кг	3089	3370	3603	3781	5289	5375
	Эксплуатацион	ный вес		кг	3250	3588	3870	4163	5694	5835
Водяной	Тип						Одноходовой н	кожухотрубный		
теплообменник -	Объем воды			л	78	107	134	160	172	201
испаритель	Перепад давления	Охлаждение	Теплообменник	кПа	37		31	36	42	35
Водяной	Тип						Одноходовой н	кожухотрубный		
теплообменник -	Расход воды	Ном.		л/сек	20,8	25,1	29,3	34,2	42,1	46,5
конденсатор	Перепад давления	Охлажде	ние	кПа	29	24	26	21	27	26
Компрессор	Тип					Г	Толугерметичный одн	овинтовой компрессо	р	
	Количество						1			2
Уровень звуковой мощности	Охлаждение	Ном.		дБА	97	98	9	9	100	101
Уровень звукового давления	Охлаждение	Ном.		дБА	78	79	8	0	81	82
Рабочий	Испаритель	Охлаждение	Мин.~Макс.	°CDB			-8~	-15		
диапазон	Конденсатор	Охлаждение	Мин.~Макс.	°CDB			18-	~65		
Хладагент	Тип	Тип					R-1	34a		
	Заправка			кг	210	190	180	210	220	250
	Контуры	Количес	гво				1			2
Электропитание	Фаза / Частота /	Напряже	ние	Гц/В			3~/50	0/400		

- Все модели соответствуют положениям Европейской директивы безопасности оборудования, работающего под давлением (PED)
- 1 или 2 винтовых компрессора с плавным регулированием производительности
- > 1 или 2 полностью независимых контура охлаждения
- Все компоненты оптимизированы для работы с хладагентом R-410A
- > Электронный расширительный вентиль
- > Компактная конструкция
- > Частичная рекуперация теплоты
- Контроллер Microtech III с усовершенствованными алгоритмами управления и удобным интерфейсом пользователя

СИСТЕМА СТАНДАРТНОЙ УСТАНОВКИ

- > Стартер Звезда-Треугольник (Y D)
- > Двойная уставка
- > Контроль фаз
- > Cоединение VICTAULIC для испарителя
- Расчетное давление на стороне испарителя по воде - 10 бар
- Расчетное давление на стороне конденсатора по воде - 16 бар
- > Электронный расширительный вентиль
- > Счетчик рабочего времени
- Контактор для общей неисправности
- Сброс уставки, ограничение нагрузки и аварийный сигнал на внешнем устройстве
- Предохранительный клапан на 2 значения давления с отводом
- > Блокировка главного выключателя
- > Аварийный останов

ОПЦИИ

- > Частичная рекуперация теплоты
- Плавный старт
- > Рассольная версия (до -8°C)
- > Реле тепловой защиты компрессора
- > Контроль минимального/максимального напряжения
- > Электросчетчик
- > Конденсаторы для компенсации коэффициента мощности
- > Ограничение тока
- > Изоляция испарителя 20мм
- > Изоляция конденсатора 20мм
- > Cоединение VICTAULIC для конденсатора
- > Трубы конденсатора Cu-ni 90-10
- > Электрический нагреватель испарителя
- > Реле протока испарителя
- > Запорный вентиль на нагнетании
- > Запорный вентиль на всасывании
- > Комплект для транспортировки (контейнер)
- Резиновая антивибрационная опора
- > Звукоизоляционная система (интегральная)
- Комплект фланцевого соединения для конденсатора
- > Манометры стороны высокого давления
- > Манометры стороны низкого давления
- Реле заземления
- > Комплект для перевозки
- Комплект фланцевого соединения для испарителя

MicroTech III

EWWQC19,C20B-SS

Только охлаждение

Стандартная эффективность Стандартный уровень шума

Модель					380	460	560	640	730	800	860	870	960	C10	C11	C12	C13	C14	C15	C16	C17	C19	C20
Холодопроизводительность	Ном.			кВт	379	462	560	635	724	793	859	868	956	1003	1050	1181	1251	1320	1452	1595	1754	1896	2055
Регулирование	Способ												Бесс	тупенч	атое								
производительности	Минимальная пр	ооизводитель	ность	%		12,5 25,0 12,5 25,0 12,5							25,0	25,0									
Потребляемая мощность	Охлаждение	кВт	89,2	109	133	150	170	179	207	199	218	247	243	268	285	303	337	373	407	441	477		
EER					4,	24	4,21	4,22	4,25	4,42	4,15	4,36	4,38	4,07	4,32	4,41	4,38	4,35	4,31	4,28	4,31	4,30	4,31
ESEER					4,61	4,59	4,	67	4,62	4,95	4,52	4,91	4,90	4,42	4,86	4,	96	4,89	4,81	4,76	4,61	4,63	4,54
Размеры	Блок	ВхШхГ		мм	1849x11	40x3373	2001x12	76x3454	1848x 1314x3535	2158x 1350x5020	1848x 1314x2001	2158x13	350x5020	1848x 1314x2001	2378x 1350x4894	2455	x1350x	c5070	2495	x1350x	4892	2495x13	350x4865
Bec	Блок			кг	1933	1967	2283	2332	2407	3921	2427	3949	3988	2457	4344	4529	4536	4607	4988	4999	5053	5204	5289
	Эксплуатационн	ный вес		КГ	2135	2169	2543	2628	2777	4422	2795	4463	4496	2812	4780	5186	5200	5280	5602	5615	5670	5881	5970
Водяной	Тип				Одноходовой кожухотрубный																		
теплообменник -	Объем воды л			л	124	118	176	170	274	344	266	344	325	251	325		538		50	505 495		539	527
испаритель	Перепад давления	Охлаждение Тепл	ообменник	кПа	48	63	44	47	54	53	49	62	58	56	69	45	49	54	59	69	88	97	120
Водяной	Тип			Одноходовой кожухотрубный																			
теплообменник -	Расход воды	Ном.		л/сек	22,4	27,4	33,2	37,7	43,1	23,3	51,3	23,3	28,2	60,1	28,2	34,7	34,8	38,9	43,0	43,4	52,0	52,3	60,9
конденсатор	Перепад давления	Охлаждени	e	кПа	59	63	67	65	16	64	20	64	67	26	67	7	3	69	1	6	1	7	15
	Перепад давления 2	Охлаждени	e	кПа			-			64	-	66	67	-	69 73 69		16	19	17	14	15		
Уровень звуковой мощности	Охлаждение	Ном.		дБА	100	101		102		105	102	10	05	103	10	05	10	07	10	06	10	07	108
Уровень звукового давления	Охлаждение	Ном.		дБА	82	83	8	4	83	84		85		8	6		87		86	8	7	8	38
Компрессор	Тип										Полуге	ермети	ічный с	днови	нтовой	і компр	оессор)					
Рабочий	Испаритель	Охлаждение Ми	н.~Макс.	°CDB										-4~10									
диапазон	Конденсатор	Охлаждение Ми	н.~Макс.	°CDB										25~45									
Хладагент	Тип													R-410A									
	Контуры	нтуры Количество					1			2	1		2	1					2				
Контур охлаждения	я Заправка кг			кг	8	0	9	0	8	0	0 90 85		85	100	90		100				130		
Контур хладагента 2	Заправка			кг			-			80	-	90	85	100	90		100				130		
Электропитание	Фаза / Частота /	Напряжение		Гц/В									3-	~/50/40	00								

EWWQ-B-XS

ПРЕИМУЩЕСТВА

- > Максимальная эффективность
- Все модели соответствуют положениям Европейской директивы безопасности оборудования, работающего под давлением (PED)
- 1 или 2 винтовых компрессора с плавным регулированием производительности
- > 1 или 2 полностью независимых контура охлаждения
- > Кожухотрубный теплообменник
- Все компоненты оптимизированы для работы с хладагентом R-410A
- > Электронный расширительный вентиль
- > Компактная конструкция
- > Частичная рекуперация теплоты
- Контроллер Microtech III с усовершенствованными алгоритмами управления и удобным интерфейсом пользователя

СИСТЕМА СТАНДАРТНОЙ УСТАНОВКИ

- > Стартер компрессора Звезда-Треугольник (Y D)
- > Двойная уставка
- > Контроль фаз
- > Cоединение VICTAULIC для испарителя
- Расчетное давление на стороне испарителя по воде - 10 бар
- Расчетное давление на стороне конденсатора по воде - 16 бар
- > Электронный расширительный вентиль
- > Счетчик рабочего времени
- > Контактор для общей неисправности
- Сброс уставки, ограничение нагрузки и аварийный сигнал на внешнем устройстве
- > Аварийный останов
- > Блокировка главного выключателя
- > Cоединение VICTAULIC для испарителя

ОПЦИИ

- > Частичная рекуперация теплоты
- Плавный старт
- > Рассольная версия (до -8°C)
- > Реле тепловой защиты компрессора
- > Контроль минимального/максимального напряжения
- > Электросчетчик
- > Конденсаторы для компенсации коэффициента мощности
- > Ограничение тока
- > Изоляция испарителя 20мм
- > Изоляция конденсатора 20мм
- > Cоединение VICTAULIC для конденсатора
- › Трубы конденсатора Cu-ni 90-10
- > Электрический нагреватель испарителя
- > Реле протока испарителя
- > Запорный вентиль на нагнетании
- > Запорный вентиль на всасывании
- Комплект для транспортировки (контейнер)
- > Резиновая антивибрационная опора
- > Звукоизоляционная система (интегральная)
- > Реле заземления
- > Комплект для перевозки
- Манометры стороны высокого давления
- Предохранительный клапан на 2 значения давления с отводом
- > Манометры стороны низкого давления
- > Комплект фланцевого соединения для испарителя
- Комплект фланцевого соединения для конденсатора

MicroTech III

EWWQC19-C22B-XS

Только охлаждение

Максимальная эффективность Стандартный уровень шума

												_				-					
Модель					420	520	640	730	800	970	C10	C11	C12	C13	C14	C15	C16	C17	C19	C20	C21
Холодопроизводительность	Ном.			кВт	420	513	636	722	798	969	1033	1111	1153	1265	1363	1442	1580	1740	1870	2025	2156
Регулирование	Способ											Бесс	тупенч	атое							
производительности	Минимальная пр	оизводит	ельность	%		12,5 25,0 12,5 25,0															
Потребляемая мощность	Охлаждение	Ном.		кВт	88,7	107	131	149	166	201	213	239	238	262	281	299	324	361	397	436	474
EER						4,79	4,84	4,83	4,8	31	4,86	4,64	4,85	4,83	4,85	4,83	4,88	4,81	4,71	4,64	4,55
ESEER					5,19	5,22	5,	28	5,22	5,06	5,53	4,85	5,4	45	5,53	5,47	5,26	5,18	4,98	4,91	4,75
Размеры	Блок	ВхШхГ		MM	2001	x1276x	3863	2001x1268x3878	2003x1314x3878	2003x1446x3919	2454x1350x5219	2003x1446x3919	2	454x13	50x521	9	2495	x1350x	4829	2495x13	50x4865
Bec	Блок			кг	2322	2403	2464	2738	2407	2427	4775	2457	4831	4873	4919	4969	51	17	5388	5408	5414
	Эксплуатационн	ный вес		кг	2594	2685	2745	3158	2815	3056	5431	3086	5479	5512	5546	5606	5794	5843	6110	6118	6124
Водяной	Тип					Одноходовой кожухотрубный															
теплообменник -	Объем воды			л	220	213	200	334	325	538	587	538	575	563	55	51	495	484	535	527	
испаритель	Перепад давления	Охлаждение	Теплообменник	кПа	55	68	71	64	57	5	3	68	64	55	67	74	69	88	90	111	124
Водяной	Тип			Одноходовой кожухотрубный																	
теплообменник -	Расход воды	Ном.		л/сек	24,4	29,8	36,8	41,8	46,3	56,2	29,9	64,7	30,2	36,7	37,2	41,8	45,7	46,2	54,4	55,1	63,1
конденсатор	Перепад давления	Охлажде	ение	кПа	50	39	42	47	59	64	40	82	36	48	49	46	44	45	60	61	78
	Перепад давления 2	Охлажде	ение	кПа				-			40	-	47	48	46		44	14 60		78	
Уровень звуковой мощности	Охлаждение	Ном.		дБА	101	102	1	03	102	103	105	104	10)6	10	07	10	06	10)7	108
Уровень звукового давления	Охлаждение	Ном.		дБА	82	83	8	34	83	84	86	85	86		87		86	8	7	8	8
Компрессор	Тип									Полу	угермет	ичный с	дновин	нтовой і	компре	ссор					
Рабочий	Испаритель	Охлаждение	Мин.~Макс.	°CDB									-4~10								
диапазон	Конденсатор	Охлаждение	Мин.~Макс.	°CDB									25~45								
Хладагент	Тип												R-410A								
	Контуры	Количес	тво					1			2	1					2				
Контур охлаждения	Заправка			кг		95 110 130 120 130 120 13							130)							
Контур хладагента 2	Заправка			кг				-			120	-		12	20				130		
Электропитание	Фаза / Частота /	Напряже	ние	Гц/В								3	~/50/40	0							

EWWD-FZXS

ПРЕИМУЩЕСТВА

- Компрессор с инверторным управлением обеспечивает точное регулирование производительности в соответствии с изменениями температуры воздуха в помещении и снаружи
- Цифровой контроллер обеспечивает эффективное управление

СИСТЕМА СТАНДАРТНОЙ УСТАНОВКИ

- > Испаритель двухходовой
- > Cоединение VICTAULIC для испарителя
- Расчетное давление на стороне испарителя по воде - 10 бар
- > Изоляция испарителя 20мм
- > Конденсатор двухходовой (4-8°C)
- > Соединение Victaulic для конденсатора
- Расчетное давление на стороне конденсатора по воде - 10 бар
- > Электронный расширительный вентиль
- Дифференциальное реле давления воды на конденсаторе и испарителе
- > Стартер компрессора с инверторным управлением
- Предохранительный клапан на 2 значения давления с отводом
- > Ограничение тока
- > Счетчик рабочего времени
- > Контактор для общей неисправности
- Сброс уставки, ограничение нагрузки и аварийный сигнал на внешнем устройстве

ОПЦИИ

- > Испаритель 1/3-ходовой
- > Комплект фланцевого соединения для испарителя
- Комплект для бокового подсоединения труб (victaulic) к конденсатору (2х-проходной)
- Расчетное давление на стороне испарителя по воде - 21 бар
- > Испаритель 1/3 ходовой
- > Комплект фланцевого соединения для конденсатора
- > Изоляция конденсатора 20мм
- › Трубы конденсатора Cu-Ni 90-10
- > Реле протока испарителя/конденсатора
- > Запорный вентиль на всасывании
- > Электросчетчик
- Резиновая противовибрационная опора
- > Звукоизоляционная система (интегральная)
- > Комплект для перевозки
- > Комплект для транспортировки (контейнер)
- Манометры стороны высокого давления
- Манометры стороны низкого давления

АКСЕССУАРЫ

- > Серийная панель EKDSSP***
- > Цифровая панель EKDDSP
- > Система контроля EKPWPRO PlantWatchPRO
- > Система контроля PlantWatchPRO EKPWPROM (модем и webсервер включены)
- > Серийная карта RS485/ Modbus (EKAC200J)
- > Kapтa Ethernet BACnet EKACBAC
- Серийная карта LON FTT 10 (предварительно загружен профиль холодильной машины) (EKACLON)

- Серийная карта RS232 Интерфейс модема (только одноблочная система) (EKACRS232)
- › Карта веб-сервер EKACWEB
- > Серийная карта BACnet MSTP (EKACBACMSTP)
- → Преобразователь из RS485 в RS232 (EKCON)
- > Преобразователь из RS485 в USB (EKCONUSB)
- > Фиксированный модем EKMODEM
- > Модем EKGSMOD GSM
- Комплект дистанционного дисплея EKRUPCK
- > Модуль дооснащения PlantWatchPro I/O для подсоединения и модификаций (EKPWPROEXT)
- Межсетевой интерфейс (Ethernet LAN SNMP) (EKGWWEB)
- > Межсетевой интерфейс для модема EKGWMODEM

Только охлаждение

Максимальная эффективность Стандартный уровень шума

Модель					320	430	520	640	860	C10			
Холодопроизводительность	Мин.			кВт	114	128	172	114	128	172			
	Ном.			кВт	314	399	517	559	729	888			
	Макс.			кВт	317	429	521	635	856	1048			
Регулирование производительности	Способ					Центробеж	ный компрессор с г	переменной скоросты	о вращения				
Потребляемая	Охлаждение Мин.			кВт	21,6	27,7	33,1	21,6	27,7	33,1			
мощность		Ном.		кВт	65,1	65,1 74,8 105		107	130	159			
		Макс.		кВт	65,9	85,7	104	132	171	206			
EER					4,83	5,34	4,93	5,21	5,61 5,58				
ESEER					7,74	8,10	8,37	8,10	8,46	8,64			
Размеры	Блок	ВхШхГ		мм	1823x1276x3254	1823x12	76x3419	1755x1790x3441	1748x1853x3289	1794x1904x3401			
Bec	Блок кг				2360	25	46	3709	4095	4765			
	Эксплуатационі	ный вес		КГ	2520	28	112	4074	4548	5330			
Водяной теплообменник -	Тип					Зат	опленный кожухотр	рубный тип (двухходов	4548 5330 й) 21 11				
испаритель	Перепад давления	Охлаждение Теп	лообменник	кПа	30	2	3	18	21	11			
Водяной	Тип					Зат	опленный кожухотр	убный тип (двухходов	вой)				
теплообменник -	Расход воды	ход воды Ном.			18,3	29	9,9	36,7	49,1	59,9			
конденсатор	Перепад давления	Охлаждени	ie	кПа	24	2	8	24	25	29			
Уровень звуковой мощности	Охлаждение	Ном.		дБА	89,0	90,1	91,2	92,4	93,6	94,6			
Уровень звукового давления	Охлаждение	Ном.		дБА	70,9	72,0	73,0	73,8	75,1	75,9			
Компрессор	Тип					Центробежный ком	прессор, не содерж	ащий масла, с магнитн	ыми подшипниками				
Рабочий	Испаритель	Охлаждение Ми	ин.~Макс.	°CDB			2	·~15					
диапазон	Конденсатор	Охлаждение Ми	ин.~Макс.	°CDB			18	8~46					
Хладагент	Тип						R-	134a					
	Заправка кг				210	18	80	220	30	300			
	Контуры Количество							1					
Электропитание	Фаза / Частота /	Напряжение	е	Гц/В			3~/	50/400					

- > С одним компрессором до 4,5 МВт
- > С двумя компрессорами до 9 МВт
- Приводы с переменной скоростью вращения (VFD) для улучшенных характеристик при частичной нагрузке (опция)
- Минимальная производительность до 5% для холодильных машин с двумя компрессорами и до 10% для холодильных машин с одним компрессором без байпаса горячего газа
- » Гибкость управления и возможность интеграции в BMS

ШИРОКИЙ ВЫБОР УРОВНЕЙ ПРОИЗВОДИТЕЛЬНОСТИ И ЭФФЕКТИВНОСТИ

С одним компрессором

> DWSC: 300 кВт - 4500 кВт - 1,1 млн возможных вариантов холодильных машин в различных комбинациях двигателей, роторов, приводов и корпусов

С двумя компрессорами

> DWDC: 600 кВт - 9 000 кВт - 0,75 млн возможных вариантов холодильных машин в различных комбинациях двигателей, роторов, приводов и корпусов

ОПЦИЯ ЭЛЕКТРОПРИВОДОВ С ЧАСТОТНЫМ РЕГУЛИРОВАНИЕМ (VFD)

- Инверторная технология, значительно улучшающая производительность при частичной нагрузке
- > Сокращение ежегодных затрат на энергию

ВЫСОКАЯ ПРОИЗВОДИТЕЛЬНОСТЬ

- Эначение СОР до 7 при полной нагрузке
- > Значение СОР до 12 при частичной нагрузке (при использовании VFD)

ЗАЩИТА ОТ ПОВРЕЖДЕНИЯ ПРИ ПОТЕРЕ ПИТАНИЯ

При потере питания холодильные машины не могут продолжать работу в их обычной последовательности выключения. Недостаточная смазка при нештатной остановке холодильной машины в случае прекращения подачи электропитания может повредить подшипники и сократить срок службы компрессора. Компрессоры оснащены баком для смазки и поршнем со сжатой пружиной, который обеспечивает централизованную смазку подшипников во время вращения по инерции. Компрессоры также быстро уменьшают ход в силу малой инерции.

ВОЗМОЖНОСТЬ ХРАНЕНИЯ ХЛАДАГЕНТА

Конденсаторы имеют достаточный объем для сбора и хранения всего количества холодильного агента в системе холодильной машины и оснащены соответствующими обратными клапанами. Эта характеристика исключает потребность в отдельных резервуарах для хранения.

Поршень

Бак для смазки

НИЗКИЙ УРОВЕНЬ РАБОЧЕГО ШУМА

Впрыск жидкости

Из конденсатора берется небольшое количество жидкого хладагента, которое впрыскивается в область диффузора. Капли жидкости поглощают акустические волны и уменьшают общий уровень рабочего звука компрессора. Эти капли испаряются, уменьшая перегрев на нагнетании.

Тише при разгрузке холодильной машины

Конструкция Daikin содействует уменьшению уровня шума при низких нагрузках, на которые большинство холодильных машин отводит большую часть рабочего времени.

ОДНА ХОЛОДИЛЬНАЯ МАШИНА С ДВУМЯ КОМПРЕССОРАМИ D-DWDC ПО СРАВНЕНИЮ С ДВУМЯ ХОЛОДИЛЬНЫМИ МАШИНАМИ, ИМЕЮЩИХ ПО ОДНОМУ КОМПРЕССОРУ

- > Меньшая стоимость оборудования
- > Меньшие затраты на установку
- > Меньшие ежегодные затраты на эксплуатацию
- Требуется меньше места в помещении для размещения оборудования (меньшая зона обслуживания)
- > Минимальная нагрузка до 5%
- Аварийное резервирование для большинства двигателей, роторов, приводов и корпусов, предназначенных для сезона охлаждения

РАБОТА НА МИНИМАЛЬНОЙ ПРОИЗВОДИТЕЛЬНОСТИ

Разгрузка до 10% полной нагрузки для холодильной машины с одним компрессором DWSC и до 5% для холодильной машины с двумя компрессорами DWDC производится без байпасирования горячего газа. Такая разгрузка обеспечивает большую стабильность температуры охлажденной воды и повышает эффективность работы компрессоров.

Мобильный выпускной диффузор увеличивает стабильность и уменьшает вибрации.


ВЫСОЧАЙШАЯ ПРОИЗВОДИТЕЛЬНОСТЬ ПРИ ЧАСТИЧНОЙ НАГРУЗКЕ

При работе одного компрессора можно использовать поверхность теплообмена всей холодильной машины. Эта огромная площадь поверхности обеспечивает исключительную производительность при частичной нагрузке. Дополнение VFD к холодильной машине с двумя компрессорами дает еще большую энергоэффективность (IPLV).

Устройство уменьшения проходного сечения

ИНТЕГРАЛЬНЫЙ КОЭФФИЦИЕНТ ЭНЕРГОЭФФЕКТИВНОСТИ ПРИ ЧАСТИЧНОЙ НАГРУЗКЕ ХОЛОДИЛЬНОЙ МАШИНЫ 2000 кВт

D-DWSC: один компрессор D-DWDC: два компрессора VFD: инвертор компрессора Можно произвести специальные настройки в большей или меньшей степени, как указано на примере.

Сокращение расходов в течение всего срока службы

> Период окупаемости - 1 - 2 года

Центробежный компрессор

- > Наилучшая эффективность при полной нагрузке
- Наивысшая эффективность в режиме частичной нагрузки при совместной работе с электроприводом с частотным регулированием
- > Одна подвижная часть (ротор блок вала)

Электропривод с частотным регулированием, установленный на блоке

- > Очень высокая эффективность в режиме частичной нагрузки
- > Отличная производительность при разгрузке
- > Автоматическое регулирование скорости
- > Плавный старт

Технология магнитных подшипников

- Нет потерь трения
- > Масло не загрязняется
- > Нет дополнительных систем контроля масла
- > Увеличенный срок службы оборудования

ШИРОКИЙ ВЫБОР УРОВНЕЙ ПРОИЗВОДИТЕЛЬНОСТИ И ЭФФЕКТИВНОСТИ

Холодильные машины DWME могут быть представлены в различных комбинациях главных компонентов: с компрессорами разных размеров, теплообменниками, электродвигателем и др. Выбранный блок, при определенном подборе испарителя и конденсатора, сможет обеспечить холодопроизводительность, потребляемую мощность, EER, и др. в зависимости от скорости вращения компрессора. Специально предназначенная программа позволит вам правильно выбрать блок для реально существующих рабочих условий. Модель DWME может похвастаться выдающейся энергоэффективностью, как в режиме полной, так и в режиме частичной нагрузки.

PA3MEP	холодопроизводительность
500S	1400 - 1900 κΒτ
EER*	до 6,50
ESEER	до 10,0

^{*} в условиях Eurovent: Вход/выход воды испарителя 12/7°С, вход/выход конденсатора по воде 30/35°С

ТИХАЯ РАБОТА

- Уровень шума 76~82дБ(А) на расстоянии 1 метр (согласно стандарту АНRI 575)
- Холодильные машины DWME идеально подходят для зон с особыми требования по шуму, таких как библиотеки, школы и др.

УМНОЕ УПРАВЛЕНИЕ

- Встроенное усовершенствованное электронное оборудование эффективно работает, даже в случае отказа электропитания
- > Удобный для пользователя сенсорный экран

ШИРОКИЙ ВЫБОР ОПЦИЙ

Стандартные опции

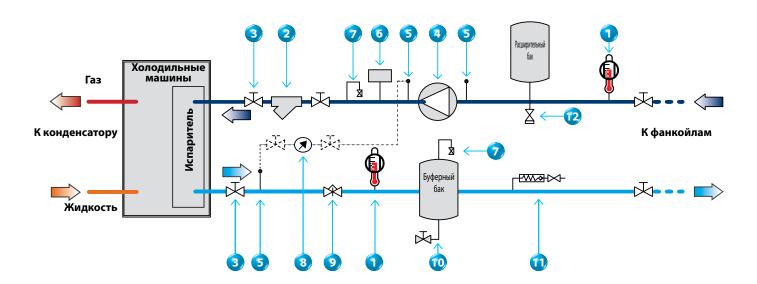
- » Водяной контур, рассчитанный на давление 150 psi (~10 бар)
- > Медные трубы испарителя и конденсатора
- > Толщина трубки 0,025 дюймов
- > Cоединения Victaulic
- > Двухходовые теплообменники
- Изоляция ¾ дюйма на испарителе, на трубах линии всасывания и нагнетания
- > Реле дифференциального давления воды
- > Звукоизоляция
- > Фильтр EMI

Опции (по запросу)

- Водяной контур, рассчитанный на давление 300 psi (~20 бар)
- > Толщина трубки 0,028/0,035 дюймов
- Конденсаторные трубки 90/10 Cu-Ni (только для толщины трубок 0,028/0,035)
- Фланцевые соединения
- > Адаптер с боковым подсоединением трубопроводов
- > 1 и 3-ходовые теплообменники
- > Двойная изоляция 1½ дюйма на испарителе
- > Блок насоса
- > Монитор хладагента
- > Устройство сглаживания гармоник
- Усиленная изоляция (повышенный ток короткого замыкания)
- > Реле заземления
- > Измерение потребляемой мощности

Холодильная машина с выносным конденсатором

Компания Daikin предлагает Вам легко адаптируемые и компактные холодильные машины с выносным конденсатором, которые могут использоваться для систем с особыми требованиями к занимаемой площади, уровню шума или работе в экстремальных условиях. В таких особых случаях предпочтительными могут быть решения с выносным конденсатором, по сравнению со стандартными системами с воздушным и водяным охлаждением.


СОДЕРЖАНИЕ

EWLP-KBW1N	146
EWLD-J-SS	148
EWLD-G-SS	150
EWLD-I-SS	152

- 1. Датчик температуры
- 2. Фильтр
- 3. Запорный вентиль
- 4. Hacoc
- 5. Точка замера давления
- 6. Реле протока
- 7. Дренаж
- 8. Манометр
- 9. Балансировочный вентиль
- 10. Дренажный клапан
- 11. Вентиль для наполнения системы
- 12. Предохранительный клапан

СХЕМА ТРУБОПРОВОДОВ ДЛЯ СИСТЕМ ОХЛАЖДЕНИЯ

EWLP-KBW1N

ПРЕИМУЩЕСТВА

- > Спиральный компрессор Daikin
- Электронная система управления с цифровым дисплеем
- > Низкие уровни шума при работе
- > Низкий уровень потребления энергии
- > Компактные размеры и малый объем хладагента
- > Простота монтажа и эксплуатации
- Пластинчатый теплообменник из нержавеющей стали
- > Совместим с гидравлическим модулем
- В комплект модели EWLP012-065КВW1N входят: главный выключатель, порты давления, реле протока, фильтр, запорный вентиль и воздухоотделитель
- \rightarrow Контроллер SE μ C²

 Температура охлаждённой воды до -5°С или -10°С.

АКСЕССУАРЫ (НАБОР)

- Гидравлический модуль (см. стр. EHMC в этом каталоге)
- Адресная карта для подсоединения к интерфейсу BMS или интерфейсу удаленного пользователя (EKAC10C)
- Дистанционный пользовательский интерфейс (EKRUMCA)
- > Низкий уровень шума 14 л.с. (EKLS1)
- > Низкий уровень шума 22-65 л.с. (EKLS2)

УПРАВЛЕНИЕ

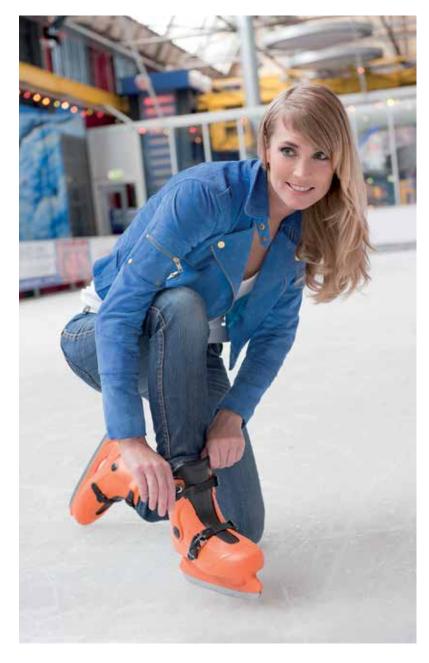
- > Микропроцессорное управление
- > Регулирование температуры воды на входе
- Регулирование температуры холодной или горячей воды

ВХОДНЫЕ / ВЫХОДНЫЕ КОНТАКТЫ

Вход

- > Дистанц. переключатель ВКЛ./ВЫКЛ
- > Контакт насоса
- Переключение охлаждение / обогрев

Мощность


- > Работа компрессора
- > Отчет об ошибках
- > Включение насоса

EWLP012-030KBW1N

Только охлаждение

Модель				012	020	026	030	040	055	065
Производительность	Охлаждение		кВт	12,1	20,0	26,8	31,2	40,0	53,7	62,4
Потребляемая мощность	Охлаждение		кВт	4,2	6,6	8,5	10,1	13,4	17,8	20,3
Ступени регулирован	ия					1			2	
EER				2,88	3,03	3,15	3,09	2,99	3,02	3,07
Размеры	ВхШхГ		мм		600 x 6	500 x 600			600 x 600 x 1200	
Bec	Вес установки		КГ	108	141	147	151	252	265	274
Испаритель	Тип						Пластинчатый			
	Минимальный объ	ем воды в системе	л	62	103	134	155	205	268	311
	Расход воды	Мин.	л/мин	17	29	38	45	57	77	89
		Номин.	л/мин	35	57	77	89	115	154	179
		Макс.	л/мин	69	115	153	179	229	307	358
Компрессор	Тип					Герметичі	ный спиральный к	омпрессор		
	Модель	Количество				1			2	
Звуковая мощность		Охлаждение	дБА		64		71		67	74
Рабочий диапазон	Испаритель	Мин~Макс	°CDB				-10(OPZL) ~ 20			
	Температура конденсации	Мин~Макс	°CDB				25 ~ 60			
Контур охлаждения	Тип хладагента	1					R-407C			
	Количество ко	нтуров				1			2	
	Регулировани	е хладагента				Термостатич	еский расширител	ъный вентиль		
Электропитание						•	3N~/400В/50Гц			
Подсоединение труб	Вход/выход вод	ы из испарителя	мм		FB:	SP 25			FBSP 40	
.,	Сток воды исп	арителя					Установка на мест	re		
	Жидкостная м	агистраль	мм	под пайку 9,52		под пайку 12,7			под пайку 2х12,7	
	Газовая магист	раль	MM	под пайку 12,7		под пайку 19,1			под пайку 2х19,1	

ПРЕИМУЩЕСТВА

- Компактная структура позволяет легко устанавливать или модифицировать блок в помещении
- » Высокая эффективность в режиме полной и частичной нагрузки
- > Kонтроллер MicroTech III для эффективного управления и простого соединения с интерфейсами LonWorks, Bacnet, Ethernet TCP/IP или Modbus

- > Стартер компрессора Звезда-Треугольник (y d)
- > Двойная уставка
- > Контроль фаз
- > Cоединение VICTAULIC для испарителя
- > Изоляция испарителя 20мм
- > Реле протока испарителя
- > Электронный расширительный вентиль
- > Запорный вентиль на нагнетании
- > Запорный вентиль на всасывании
- > Счетчик рабочего времени
- > Контактор для общей неисправности
- > Блокировка главного выключателя
- > Аварийный останов
- Сброс уставки, ограничение нагрузки и аварийный сигнал на внешнем устройстве

ОПЦИИ

- > Рассольная версия
- > Реле тепловой защиты компрессора
- Контроль минимального/ максимального напряжения
- > Электросчетчик
- > Ограничение тока
- > Манометры стороны низкого давления
- > Резиновая антивибрационная опора
- > Звукоизоляционная система (компрессор)
- Предохранительный клапан на 2 значения давления с отводом
- > Автоматические выключатели
- Ресивер жидкости
- > Манометры стороны высокого давления
- Плавный старт
- > Комплект для транспортировки (контейнер)
- > Комплект для перевозки
- > Реле заземления
- Автоматические выключатели компрессора



MicroTech III

EWLD120J-SS

Только охлаждение

Стандартная эффективность Стандартный уровень шума

Модель					110	130	145	165	195	235	265	290	310	330	360	390	430	470	500	530
Холодопроизводительность	Ном.			кВт	109	127	143	164	191	236	264	285	306	327	355	382	427	473	501	528
Регулирование производительности	Способ/Минимальна	ая производ	ительность	%		Плавно	е регулі	ровани	е мощн	ости/25			1	7лавное	регули	рование	мощно	сти/12,5		
Потребляемая мощность	Охлаждение	Ном.		кВт	31,1	38,2	43,8	50,4	56,0	65,9	75,3	87,5	94,0	100	106	112	122	131	141	150
EER					3,52	3,33	3,	25	3,41	3,59	3,51		3,26		3,34	3,42	3,51	3,60	3,56	3,52
Размеры	Блок	ВхШхГ		мм			102	0x913x2	684						200	0x913x2	684			
Bec	Блок			кг	1124	1141	1237	1263	1305	14	89	2474	2500	2526	2568	2611	2795		2979	
	Эксплуатационн	ый вес		кг	1138	1159	1253	1281	1327	15	18	2505	2533	2562	2608	2655	2845		3036	
Водяной теплообменник -	Тип										Пласти	нчатый,	один на	контур						
испаритель	Перепад давления	Охлаждение	Итого	кПа	14	12	36	34	32	25	31	3	6	3	4	3	2	2	5	31
Уровень звуковой мощности	Охлаждение	Ном.		дБА			88,6			87	',2			92,4			91,8		91,0	
Уровень звукового давления	Охлаждение	Ном.		дБА			71,4			70),0			74,4			73,8		73,0	
Компрессор	Тип									Полуге	рметичн	ный одн	овинтов	ой комп	рессор					
Рабочий	Испаритель	Охлаждение	Мин.~Макс.	°CDB								-10	~15							
диапазон	Конденсатор	Охлаждение	Мин.~Макс.	°CDB	ĺ							25-	-60							
Хладагент	Тип											R-1	34a							
	Контуры	Количес	тво					1								2				
Электропитание	Фаза / Частота /	Напряже	ние	Гц/В								3~/50	0/400							

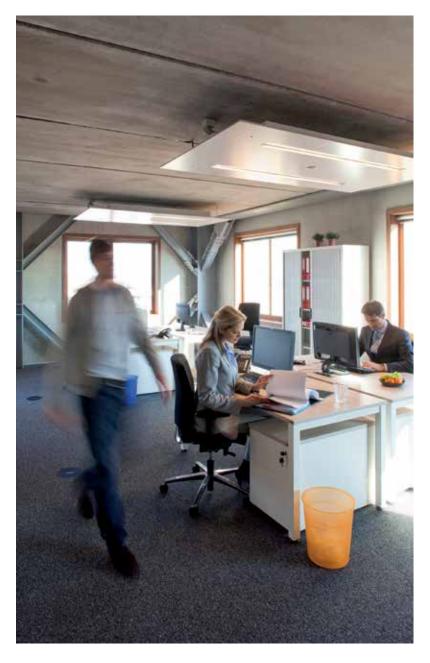
ПРЕИМУЩЕСТВА

- Одновинтовой компрессор с плавным регулированием производительности
- > Оптимизирован для работы с хладагентом R-134a
- 1 или 2 полностью независимых контура охлаждения
- > Электронный расширительный вентиль
- Кожухотрубный испаритель DX один ход по хладагенту для облегчения циркуляции и возврата масла
- Все модели соответствуют положениям
 Европейской директивы безопасности
 оборудования, работающего под давлением (PED)
- Контроллер Microtech III с усовершенствованными алгоритмами управления и удобным интерфейсом пользователя

- > Стартер Звезда-Треугольник (Y D)
- > Двойная уставка
- > Контроль фаз
- > Соединение VICTAULIC для испарителя
- Расчетное давление на стороне испарителя по воде - 10 бар
- > Электронный расширительный вентиль
- > Запорный вентиль на всасывании
- > Запорный вентиль на нагнетании
- > Счетчик рабочего времени
- Контактор для общей неисправности
- > Аварийный останов
- > Блокировка главного выключателя

ОПЦИИ

- > Частичная рекуперация теплоты
- > Плавный старт
- > Рассольная версия (до -8°C)
- > Реле тепловой защиты компрессора
- Контроль минимального/ максимального напряжения
- Электросчетчик
- Конденсаторы для компенсации коэффициента мощности
- Ограничение тока
- > Изоляция испарителя 20мм
- Реле протока испарителя
- > Комплект для перевозки
- > Резиновая антивибрационная опора
- > Звукоизоляционная система (компрессор)
- Предохранительный клапан на 2 значения давления с отводом
- > Ресивер жидкости
- > Манометры стороны высокого давления
- > Манометры стороны низкого давления
- > Реле заземления
- > Комплект для транспортировки (контейнер)
- Комплект фланцевого соединения для испарителя



MicroTech III

EWLD~G-SS

Только охлаждение

Стандартная эффективность Стандартный уровень шума

									100											
Модель					160	190	240	280	320	360	380	420	480	550						
Холодопроизводительность	Ном.			кВт	160	188	243	269	315	350	379	426	474	524						
Регулирование производительности	Способ/Минимальна	ая производ	ительность	%	Плавн	ое регулиро	зание мощно	ости/25		Плавно	е регулиров	ание мощно	сти/12,5							
Потребляемая мощность	Охлаждение	Ном.		кВт	46,1	55,3	66,8	75,7	92,1	101,3	110,5	121,7	133,4	150						
EER					3,47	3,40	3,64	3,55	3,42	3,46	3,43	3,50	3,55	3,48						
Размеры	Блок	ВхШхГ		мм		1860x10	00x3700		1860x1100x4400		19	942x1100x44	00							
Bec	Блок			кг	12	180	13	198	2442	24	46	2501	25	06						
	Эксплуатационн	ный вес		кг	13	37	15	16		2560										
Водяной теплообменник -	Тип																			
испаритель	Перепад давления	Охлаждение	Теплообменник	кПа	44	60	41	49	57	55,9	64,4	49,9	50,6	60,6						
Уровень звуковой мощности	Охлаждение	Ном.		дБА		87	7,7				90),2								
Уровень звукового давления	Охлаждение	Ном.		дБА		69	9,7				71	1,7								
Компрессор	Тип							Полугери	етичный одно	винтовой к	омпрессор									
Рабочий	Испаритель	Охлаждение	Мин.~Макс.	°CDB					-8~	15										
диапазон	Конденсатор	Охлаждение	Мин.~Макс.	°CDB					25~	60										
Хладагент	Тип								R-13	34a		3,50 3,55 3, 1942x1100x4400 2501 2506 2670 49,9 50,6 60 90,2 71,7								
	Контуры	Количес	гво				1					2	те мощности/12,5 121,7 133,4 1! 3,50 3,55 3, x1100x4400 2501 2506 2670							
Электропитание	Фаза / Частота /	Напряже	ние	Гц/В					3~/50	/400		19 426 474 524 Пирование мощности/12,5 13,50 3,55 3,48 1942x1100x4400 2501 2506 2670 4 49,9 50,6 60,6 90,2 71,7								

ПРЕИМУЩЕСТВА

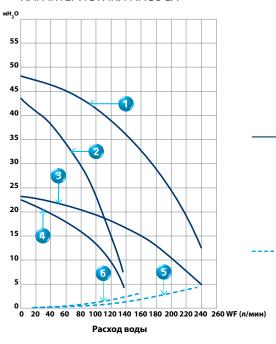
- Одновинтовой компрессор с плавным регулированием производительности
- Оптимизирован для работы с хладагентом R-134a
- > Электронный расширительный вентиль
- Кожухотрубный испаритель DX один ход по хладагенту для облегчения циркуляции и возврата масла
- Все модели соответствуют положениям Европейской директивы безопасности оборудования, работающего под давлением (PED)
- > Kонтроллер MicroTech III для эффективного управления и простого соединения с интерфейсами LonWorks, Bacnet, Ethernet TCP/IP или Modbus

- > Стартер компрессора Звезда-Треугольник (Y D)
- > Двойная уставка
- Контроль фаз
- > Соединение VICTAULIC для испарителя
- Расчетное давление на стороне испарителя по воде - 10 бар
- > Электронный расширительный вентиль
- > Манометры стороны высокого давления
- > Счетчик рабочего времени
- > Контактор для общей неисправности
- > Сброс уставки, ограничение нагрузки и аварийный сигнал на внешнем устройстве
- Блокировка главного выключателя
- > Аварийный останов

ОПЦИИ

- > Плавный старт
- > Рассольная версия (до -8°C)
- Контроль минимального/максимального напряжения
- > Электросчетчик
- Конденсаторы для компенсации коэффициента мощности
- Ограничение тока
- > Изоляция испарителя 20мм
- > Реле протока испарителя
- > Запорный вентиль на нагнетании
- > Запорный вентиль на всасывании
- Комплект для транспортировки (контейнер)
- > Резиновая антивибрационная опора
- > Звукоизоляционная система (интегральная)
- Предохранительный клапан на 2 значения давления с отводом
- > Ресивер жидкости
- > Манометры стороны высокого давления
- > Манометры стороны низкого давления
- > Реле тепловой защиты компрессора
- > Комплект для перевозки
- Комплект фланцевого соединения для испарителя
- Реле заземления

MicroTech III


Только охлаждение

Стандартная эффективность Стандартный уровень шума

Модель					320	40	0 420	500	600	650	750	800	850	900	950	C10	C11	C12	C13	C14	C15	C16	C17
Холодопроизводительность	Ном.			кВт	327	38	9 426	502	594	655	727	785	847	916	963	1029	1074	1121	1185	1263	1314	1365	1416
Регулирование производительности	Способ/Минимальн	ая производ	ительность	%	Плавное	регулі	ирование мог	цности/25	Пла	авное р	егули	оовани	е мощі	ности/	12,5		Плавн	ое рег	улиров	зание м	лощно	сти/8,3	
Потребляемая мощность	Охлаждение	Ном.		кВт	84,8	10	2 118	139	167	183	201	217	234	255	274	283	300	316	332	351	371	391	411
EER					3,86	3,8	3,62	3,61	3,55	3,58		3,62		3,59	3,51	3,64	3,59	3,55	3,56	3,59	3,54	3,49	3,45
Размеры	Блок	ВхШхГ		мм	18	899x	×1468x31	14			2323	x1350x	4116				2415	x2128x	(4427		2415	x2135x	4426
Bec	Блок			КГ	18	61	1869	1884	3331	3339	3347	3356	3364	34	12	5146	51	67	5188		52	208	
	Эксплуатационн	ный вес		КГ	20	54	2052	2056	36	502	3603	3604	3605	36	45	5667	56	71	5677		56	580	
Водяной теплообменник -	Тип	Одноходовой кожухотрубный																					
испаритель	Перепад давления	Охлаждение	Итого	кПа	34		47	54	49	39	52	4	7	4	5	52	46	49	41	51	55	59	63
Уровень звуковой мощности	Охлаждение	Ном.		дБА	93,7	96,	,6 9	5,7	96,9	97,3	97,8	98,9		99,8		100,4	100,8	101,2	103	100,4	100,8	101,2	103
Уровень звукового давления	Охлаждение	Ном.		дБА	75,2	76,	,2 7	3,2	77,8	78,2	78,7	79,8		80,7		80,4	80,8	81,2	83	80,4	80,8	81,2	83
Компрессор	Тип										Полуг	ермети	чный с	днови	нтової	й комп	oeccop						
Рабочий	Испаритель	Охлаждение	Мин.~Макс.	°CDB										-8~15									
диапазон	Конденсатор	Охлаждение	Мин.~Макс.	°CDB										25~60									
Хладагент	Тип													R-134a									
	Заправка			КГ										5									
	Контуры	Количес	тво				1					2							3	3			
Электропитание	Фаза / Частота /	Напряже	ние	Гц/В									3,	~/50/40	00								

ХАРАКТЕРИСТИКИ НАСОСА

Параметры насоса

- 1. EHMC30AV1080
- 2. EHMC10AV1080 & EHMC15AV1080
- 3. EHMC30AV1010
- 4. EHMC10AV1010 & EHMC15AV1010

Гидравлический модуль +потери давления в фильтре

- 5. EHMC15/30AV1010 & EHMC15/30AV1080
- 6. EHMC10AV1010 & EHMC10AV1080

ПРЕИМУЩЕСТВА

- Буфферный бак 100 л
- Защита от образования льда (ленточного типа)
- Один насос
- Расширительный бак 12 л
- Стандартные сдвоенные порты давления

Гидравлический блок

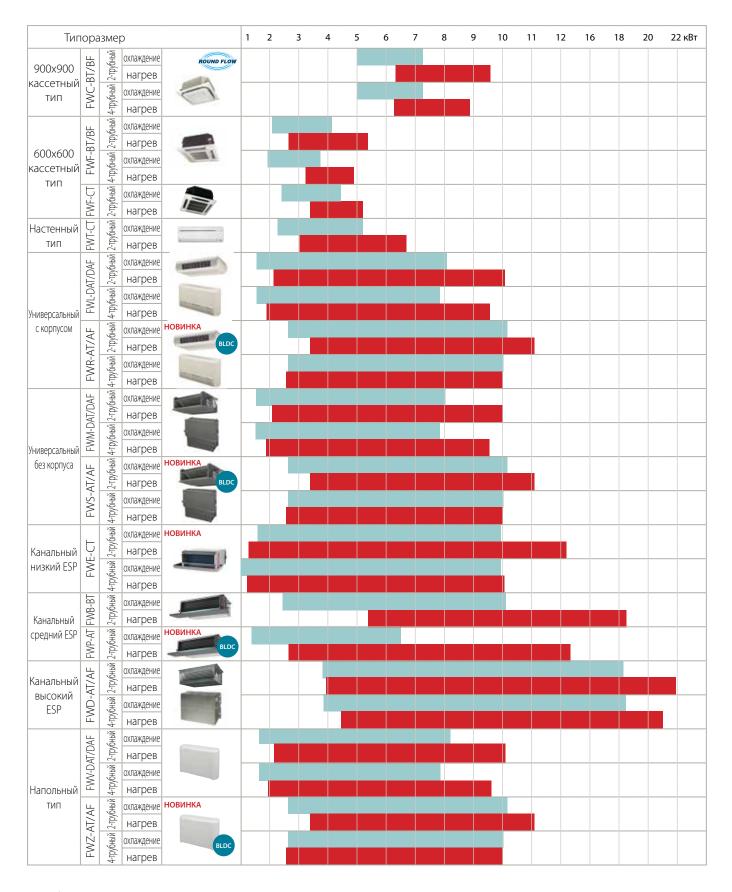
EHMC-AV			1	0	15	5	30	0
EHIVIC-AV			1010	1080	1010	1080	1010	1080
Номинальный расход		л/мин	6	52	8	8	18	37
Номинальный ВСД		мН,О	17	34	15	27	10	27
Потребляемая мощно	СТЬ	Вт	630	1050	650	1070	1070	2090
Размеры (ВхШхГ)		MM			1284x6	35x688		
Вес установки		кг	99	101	102	104	105	111
Уровень звуковой мо	щности	дБА			6	3		
Уровень звукового да	вления	дБА			5	2		
Электропитание		V1			1~/230	В/50Гц		
Рабочий диапазон	Сторона воды	℃			-10°C -	~ 55°C		
	Сторона воздуха	°CDB			-10°C -	~ 43°C		
Подсоединение труб	Вход/выход воды		1" E	SPF	2" B	SPF	2-1/2	' BSPF
	Дренаж				1/.	2"	,	

Буферный бак

Daikin EKBT - это гидравлический блок для установки внутри помещения и снаружи. Он разработан для установки вместе с блоком EUWA/Y-KBZW1, в закрытых системах, и может быть использован с водой и гликолем.

модель	Описание	Объем	Размеры	Вес установки
EKBT	Буферный накопитель со шкафом	200л	1284x637x754	86,5
EKBT500N	Буферный бак	500л	710x1670	70
EKBTC10N	Буферный бак	1000л	860x2020	100
EKBT500C	Буферный накопитель со шкафом	500л	1200x1200x1950	160
EKBTC10C	Буферный накопитель со шкафом	1000л	1200x1450x1950	185

Фанкойлы


Фанкойлы являются весьма эффективными устройствами, превращающими водоохлаждаемую холодильную машину, тепловой насос или бойлер в эффективную, тихую систему кондиционирования воздуха. Эти блоки являются высокоэффективным решением для обеспечения комфортной среды в коммерческих и бытовых помещениях.

Компания DAIKIN предлагает широкий ассортимент фанкойлов скрытого и открытого монтажа. Имеются три модели, обеспечивающие гибкую конфигурацию. Единственный вращающийся элемент этих блоков - вентилятор, что дает этим моделям преимущество при использовании в офисах, гостиницах и жилых домах. Вы всегда сможете подобрать оптимальное решение, как с технической, так и эстетической точки зрения.

СОДЕРЖАНИЕ

ФАНКОЙЛЫ - АКСЕССУАРЫ	158	FWM-DAT/DAF	170
ФАНКОЙЛЫ - УПРАВЛЕНИЕ	162	FWD-AT/AF	171
FWZ-AT/AF	164	FWT-CT	172
FWR-AT/AF	165	FWB-BT	173
FWS-AT/AF	166	FWE-CT/CF	174
FWP-AT	167	FWC-BT/BF	175
FWV-DAT/DAF	168	FWF-BT/BF	176
FWL-DAT/DAF	169	FWF-CT	177

ФАНКОЙЛЫ

^{*} BLDC: бесщеточный двигатель вентилятора постоянного тока с инверторным управлением

ФАНКОЙЛЫ - АКСЕССУАРЫ

				F		-DAT/DAF / AF / FWV-DAT	/DAF							FWD-AT/A	F		
Сеть и системы управления	1	15	2	25	3	35	4	6	8	10	4	6	8	10	12	16	18
Проводной пульт управления (стандартный)					FV	VEC1A								FWEC1			
Проводной пульт управления (улучшенный)					FV	VEC2A								FWEC2			
Проводной пульт управления (улучшенный плюс)					FV	VEC3A								FWEC3			
Электромеханическая панель управления					ECI	FWMB6								-			
Встроенный установочный блок контроллера FCU					FV	VECKA								-			
Комплект настенной установки для электронного пульта управления					FV	VFCKA								FWFCKA			
Проводной пульт управления (только охлаждение)						-								-			
Проводной пульт управления (тепловой насос)						-								-			
Беспроводной пульт управления (тепловой насос)						-						-					
Датчик температуры					FV	VTSKA					FWTSKA						
Датчик относительной влажности					FV	VHSKA			FWHSK/	١							
Термостат останова вентилятора					Υ	FSTA6								YFSTA6			
Адаптер ведущий/ведомый					EP	IMSB6								EPIMSB	5		
Модуль электропитания						-							-			EPIB6	
Доп. плата для соединения MOD-bus						-								-			
Пульт ДУ - Инфракрасный - Н/Р						-								-			
Пульт ДУ - Инфракрасный - С/О						-								-			
Центральный пульт ДУ - Распредепительная коробка с клеммой заземления (3 блока)						-								-			
Унифицированный пульт вкл/выкл - Распределительная коробка с клемиой заземления (3 блока)						-								-			
Таймер						-								-			
Микропроцессорный сенсорный пульт управления + электрический блок установки						-								-			
Дистанционный датчик						-								-			
Дистанционное управление "Вкл/Выкл" "Форсированное выкл."						-								-			
Плата управления клапаном						-								-			
Доп. плата для соединения MOD-bus						-								-			
Проводной адаптер для электрических приборов						-								-			

_														
				FWM-C	OAT/DAF / FWL-D	AT/DAF / FWV-	DAT/DAF							
Клапаны	1	15	2	25	3	35	4		6	8	10	4	6	8
2-трубный 230В ВКЛ/ВЫКЛ 3-ходовой клапан с электроприводом с монтажным комплектом			E2MV	V03A6			E	E2MV0	6A6	E2N	MV10A6	ED2MV04A6		ED2MV10A6
4-трубный 230В ВКЛ/ВЫКЛ 3-ходовой клапан с электроприводом с монтажным комплектом			E4MV	V03A6			E4	E4MV0	6A6	E4N	MV10A6	ED4MV04A6		ED4MV10A6
24В ВКЛ-ВЫКЛ 2-ходовой клапан с электроприводом с монтажным комплектом (теплообменник для охлаждения)				E2MV	207A6					E2M	/IV210A6			
2-трубный 230В ВКЛ/ВЫКЛ 3-ходовой клапан с электроприводом с упрощенным монтажным комплектом								-						
4-трубный 230В ВКЛ/ВЫКЛ 3-ходовой клапан с электроприводом с упрощенным монтажным комплектом								-						
2-трубный 24В ВКЛ/ВЫКЛ 3-ходовой клапан с электроприводом с монтажным комплектом					-						-			
4-трубный 24В ВКЛ/ВЫКЛ 3-ходовой клапан с электроприводом с монтажным комплектом					-						-			
230В ВКЛ-ВЫКЛ 2-ходовой клапан с электроприводом с монтажным комплектом (теплообменник для охлаждения)											-			
230В ВКЛ-ВЫКЛ 2-ходовой клапан с электроприводом с монтажным комплектом (дополнительный теплообменник)					-						-			
24В ВКЛ-ВЫКЛ 2-ходовой клапан с электроприводом с монтажным комплектом (теплообменник для охлаждения)											-			
24В ВКЛ-ВЫКЛ 2-ходовой клапан с электроприводом с монтажным комплектом (дополнительный теплообменник)											-			

		FWB-BT		FWC-BT/BF	FWF-CT	FWF-BT/BF	FWT-CT	FWE-CT	FWE-CF
Клапаны	2-4	5-7	8-10	Все размеры	Все размеры	Все размеры	Все размеры	Все размеры	Все размеры
Комплект 3-ходового клапана вкл/выкл (2-трубный)	-	-	-	EKMV3C09B7	MCKCW2T3VN	EKMV3C09B	-	1 x EKMV3B10B7	-
Комплект 3-ходового клапана вкл/выкл (4-трубный)	-	-	-	2 x EKMV3C09B7	-	2 x EKMV3C09B7	-	-	2 x EKMV3B10B7
Комплект 2-ходового клапана вкл/выкл (дополнительный теплообменник)	E2MV	207A6	E2MV210A6	-	-	-	-	-	-
Комплект 3-ходового клапана вкл/выкл (дополнительный теплообменник)	E2MV	307A6	E2MV310A6	-	-	-	-	-	-
Комплект 2-ходового клапана вкл/выкл (2-трубный)	-	-	-	EKMV2C09B7	-	EKMV2C09B7	MWMJW2T2VN	1 x EKMV2B10C7	-
Комплект 2-ходового клапана вкл/выкл (4-трубный)	-	-	-	2 x EKMV2C09B7	-	2 x EKMV2C09B7	-	-	2 x EKMV2B10C7

	FWB-BT		FWT-CT	FWC-BT/BF	FWF-CT	FWF-BT/BF	FWE-CT/CF		FW	Z-AT			FW	R-AT			FW	S-AT				
2-4	5-7	8-10	Все размеры	Все размеры	Все размеры	Все размеры	Все размеры	2	3	6	8	2	3	6	8	2	3	6	8			
	FWEC1A		MERCA	BRC315D7	MERCA	BRC315D7	FWEC1A			-				-				-				
	FWEC2A		-	-	-	-	FWEC2A			-				-				-				
	FWEC3A		-	-	-	-	FWEC3A			-				-				-				
	-		-	-	-	-	-			-				-				-				
	-		-	-	-	-	-						FWE	C3A								
	FWFCKA		-	-	-	-	-								FW	FCKA						
	-		SRC-COB	-	SRC-COB	-	-			-				-				-				
	-		SRC-HPB	-	SRC-HPB	-	-			-				-				-				
	-		WRC-HPC	-	WRC-HPC	-	-			-				-				-				
	FWTSKA		-	-	-	-	-						FW	SKA	A							
	FWHSKA		-	-	-	-	-						FWH	ISKA								
	YFSTA6		-	-	-	-	-			-				-				-				
	EPIMSB6		-	-	-	-	-			-				-				-				
	-		-	EKFCMBCB7	-	EKFCMBCB7	-			-				-				-				
	-		-	EKFCMBCB	-	EKFCMBCB	-			-				-				-				
	-		-	BRC7F532F	-	BRC7F530	-			-				-				-				
	-		-	BRC7F533F	-	BRC7F531	-			-				-				-				
	-		-	DCS302CA51+KJB311A	-	DCS302CA51 + KJB311A	-			-				-				-				
	-		-	DCS301BA51 + KJB212A	-	DCS301BA51 + KJB212A	-			-				-				-				
	-		-	DST301BA51	-	DST301BA51	-			-				-				-				
	-		-	DCS601C51C+KJB411A	-	DCS601C51C + KJB411A	-			-				-				-				
	-		-	KRCS01-1	-	KRCS01-1	-															
	-		-	-	-	EKROROA	-										-					
	-		-	EKRP1C11	-	EKRP1C11	-											-				
	-		-	EKFCMBCB7	-	EKFCMBCB7	-			-				-				-				
	-		-	KRP2A52/KRP4AA53	-	KRP2A52/KRP4AA53	-			-				-				-				

FWD-AT/AF	F				FWZ	Z-AT			FWF	R-AT			FWS	S-AT	
10	12	16	18	2	3	6	8	2	3	6	8	2	3	6	8
	ED2MV12A6	ED2N	IV18A6	E2MV	'03A6	E2MV06A6	E2MV10A6	E2MV	'03A6	E2MV06A6	E2MV10A6	E2MV	/03A6	E2MV06A6	E2MV10A6
	2 x ED2MV12A6	ED2N	2 x IV18A6	E4MV	'03A6	E4MV06A6	E4MV10A6	E4MV	'03A6	E4MV06A6	E4MV10A6	E4MV	/03A6	E4MV06A6	E4MV10A6
-				-	-	-	-	-	-	-	-	-	-	-	-
-				E2MVD03A6	E2MVD03A6	E2MVD06A6	E2MVD10A6	E2MVD03A6	E2MVD03A6	E2MVD06A6	E2MVD10A6	E2MVD03A6	E2MVD03A6	E2MVD06A6	E2MVD10A6
-				E4MVD03A6	E4MVD03A6	E4MVD06A6	E4MVD10A6	E4MVD03A6	E4MVD03A6	E4MVD06A6	E4MVD10A6	E4MVD03A6	E4MVD03A6	E4MVD06A6	E4MVD10A6
-				E2M2V03A6	E2M2V03A6	E2M2V06A6	E2M2V10A6	E2M2V03A6	E2M2V03A6	E2M2V06A6	E2M2V10A6	E2M2V03A6	E2M2V03A6	E2M2V06A6	E2M2V10A6
-				E42M2V03A6	E4M2V03A6	E4M2V06A6	E4M2V10A6	E4M2V03A6	E4M2V03A6	E4M2V06A6	E4M2V10A6	E4M2V03A6	E4M2V03A6	E4M2V06A6	E4M2V10A6
-				E2MV2B07A6	E2MV2B07A6	E2MV2B07A6	E2MV2B10A6	E2MV2B07A6	E2MV2B07A6	E2MV2B07A6	E2MV2B10A6	E2MV2B07A6	E2MV2B07A6	E2MV2B07A6	E2MV2B10A6
-									E2MV2	B07A6					
-				E2M2V207A6	E2M2V207A6	E2M2V207A6	E2M2V210A6	E2M2V207A6	E2M2V207A6	E2M2V207A6	E2M2V210A6	E2M2V207A6	E2M2V207A6	E2M2V207A6	E2M2V210A6
-									E2M2V	'207A6					

ФАНКОЙЛЫ - АКСЕССУАРЫ

			FW	/M-DAT/D	AF / FWL-D	OAT/DAF / I	WV-DAT/I	DAF						FWD-AT/AF					
Другие аксессуары	1	15	2	25	3	35	4	6	8	10	4	6	8	10					
Электронагреватель (стандартный)	EEH	01A6	EEH	102A6	EEH	03A6	EEH	06A6	EEH1	10A6	EDEH04A6	EDEHS06A6		EDEHS10A6					
Электронагреватель (большой)						-					EDEH04A6	EDEHB06A6		EDEHB10A6					
Заслонки для забора свежего воздуха (ручной режим)		EFA	02A6		EFA	03A6	EFA)6A6	EFA1	0A6	EDMFA04A6	EDMFA06A6		EDMFA10A6					
Дополнительный однорядный теплообменник		ESRH	H02A6		ESRH	H03A6	ESRH	06A6	ESRH	10A6				-					
Воздухозаборная и выпускная решетка + комплект крепления переднего фильтра для канальных типов		EAID	F02A6		EAIDF0	3A6 202	EAIDI	F06A6	EAIDF	-10A6				-					
Задняя панель для вертикальных блоков		ERPV	/02A6		ERPV0	3A6 40		06A6 18	ERPV	10A6				-					
Опорные ножки (ножки= опорные скобы + крышки)				ESFVO	06A6 21				ESFV	10A6				-					
Опорные стойки + решетка		ESFV	G02A6		ESFV	G03A6	ESFVO	G06A6	ESFVC	510A6			-						
Вертикальный дренажный поддон					EDF	PVB6							EDDPV10A6						
Горизонтальный дренажный поддон					EDF	PHB6							EDDPH10A	16					
Смеситель с круговыми соединениями						-							-						

Другие аксессуары	FWC-BT/BF	FWF-BT/BF
Элемент уплотнения выпуска воздуха	KDBHQ55C140	KDBH44BA60
Панельная прокладка	·	KDBQ44B60
Фильтр длительного срока службы	KAFP551K160	KAFQ441BA60
Комплект для забора свежего воздуха	KDDQ55C140-1/-2	KDDQ44XA60
Корпус для дополнительнительных плат	KRP1H98	KRP1BA101

					FWB-BT			FWZ	Z-AT			FW	R-AT			FW	S-AT	
12	1	6	18	2-4	5-7	8-10	2	3	6	8	2	3	6	8	2	3	6	8
EDEHS12A6	EI	DEHS	18A6	Зав	водской монт	таж	EEH02A6	EEH03A6	EEH06A6	EEH10A6	EEH02A6	EEH03A6	EEH06A6	EEH10A6	EEH02A6	EEH03A6	EEH06A6	EEH10A6
EDEHB12A6	E	DEHB	18A6		-				-				-				-	
EDMFA12A6	EC	OMFA	18A6		-				-				-				-	
				EAH04A6 EAH07A6 EAH10A			ESRH02A6	ESRH03A6	ESRH06A6	ESRH10A6	ESRH02A6	ESRH03A6	ESRH06A6	ESRH10A6	ESRH02A6	ESRH03A6	ESRH06A6	ESRH10A6
				EARIU4AO EARIUA					-				-		EAIDF02A6	EAIDF03A6	EAIDF06A6	EAIDF10A6
					-		ERPV02A6	ERPV03A6	ERPV06A6	ERPV10A6	ERPV02A6	ERPV03A6	ERPV06A6	ERPV10A6			-	
					-		ESFV06A6	ESFV06A6	ESFV06A6	ESFV10A6			-		ESFV06A6	ESFV06A6	ESFV06A6	ESFV10A6
					-		ESFVG02A6	ESFVG03A6	ESFVG06A6	ESFVG10A6			-				-	
EDDP	V18	A6			-						1	EDF	VA6					
EDDPI	H18.	A6			-				-					EDP	PHA6			
-	-				-				-				-		EPCC02A6	EPCC03A6	EPCC06A6	EPCC10A6

D	FWF-CT	FWC-BT/BF	FWF-BT/BF
Пульты	Все размеры	Все размеры	Все размеры
Декоративная панель 600х600 (2-трубн.)	DCP600TC	-	-
Декоративная панель (RAL 9010 - серые уплотнения) 4-х поточная	-	-	BYFQ60B
Декоративная панель - Стандартная (RAL 9010 - серые уплотнения) Круглопоточный тип	-	BYCQ140CW1	-
Декоративная панель - Белая (RAL 9010 - белые уплотнения) Круглопоточный тип	-	BYCQ140CW1W	-

ФАНКОЙЛЫ - УПРАВЛЕНИЕ

Фанкойлы могут работать с различными пультами управления в зависимости от модели.

ECFWMB6

ВСТРОЕННЫЙ ЭЛЕКТРОМЕХАНИЧЕСКИЙ КОНТРОЛЛЕР

- Переключатель скорости вентилятора
- Ручное переключение охлаждение/нагрев.
- Двухпозиционные клапаны/могут также управляться ECFWMB6

BRC315D7

ПРОВОДНОЙ ПУЛЬТ ДИСТАНЦИОННОГО **УПРАВЛЕНИЯ**

- Для управления каждым фанкойлом в отдельности
- Функция охлаждения и нагрева
- Таймер ВКЛ/ВЫКЛ

FWEC1A

ЭЛЕКТРОННЫЙ КОНТРОЛЛЕР

- Управление двухпозиционными клапанами двух - и четырехтрубных систем
- Управление дополнительным нагревательным элементом
- Переключение охлаждение/нагрев: в автономном или удаленном ручном режиме (централизованном), автоматическом (в зависимости от температуры воды (опция) или температуры воздуха)
- Возможность удаленного централизованного переключения режимов охлаждение/нагрев и внешней активации посредством сухих контактов
- Датчик температуры (аксессуар FWTSKAA)
- Функция экономии (коррекция уставки на 2,5°С и возможность вентилятора работать на минимальной скорости)

FWEC2A

- Состоит из: ЖК-дисплея клавиатуры
- Монтаж на стене.
- Такой же, что и для FWEC1A со следующими дополнительными функциями:
 - 1) контроль влажности:
 - индикация относительной влажности
 - удаление влаги (режим охлаждения) Ручная активация
 - 2) интерфейс последовательной связи (шина RS485)
 - возможность настройки главной-второстепенной системы с 247 второстепенными блоками, в которой один из блоков управления является главным и управляет всеми другими второстепенными блоками. (протокол modbus)

FWEC3A

- Состоит из: ЖК-дисплея клавиатуры
- Монтаж на стене.
- Такой же, что и для FWEC2A со следующими дополнительными функциями:
 - 1) Задняя подсветка
 - 2) Управление пропорциональным клапаном (два выходных напряжения пропорциональных клапанов)
 - 3) Контактное напряжение 0-10В
 - 4) Реле времени и еженедельный таймер (вкл / выкл или уставка возд.потока)
 - 5) Объединение в BMS (уже включено в модели FWEC2A)
 - 6) Два цифровых вывода (без напряжения) для управления электрическими нагревателями с еженедельным таймером

BRC7F532F

ИНФРАКРАСНЫЙ ПУЛЬТ ДИСТАНЦИОННОГО **УПРАВЛЕНИЯ**

- Для управления каждым фанкойлом в отдельности
- Функция охлаждения и нагрева

MERCA

СТАНДАРТНЫЙ ПРОВОДНОЙ ПУЛЬТ ДИСТАНЦИОННОГО УПРАВЛЕНИЯ

- > Скорость вентилятора
- Функция работы во время сна
- > Изм. полож.
- > Установка температуры
- Режим работы
- > ЖК-экран
- > Переключатель ВКЛ/ВЫКЛ
- Часы реального времени
- > Активный таймер
- > ВКЛ/ВЫКЛ таймера

SRC-COA

SRC-HPA

УПРОЩЕННЫЙ ПРОВОДНОЙ ПУЛЬТ ДИСТАНЦИОННОГО УПРАВЛЕНИЯ ТОЛЬКО ДЛЯ ОХЛАЖДЕНИЯ И ТЕПЛОВОЙ НАСОС

- > Индикация температуры
- Установка температуры
- > Установка таймера
- > Переключатель ВКЛ/ВЫКЛ
- > Скорость вентилятора
- > Режим работы
- > Изм. полож.
- Функция работы во время сна

WRC-HPC

БЕСПРОВОДНОЙ ПУЛЬТ УПРАВЛЕНИЯ ДЛЯ ТЕПЛОВОГО НАСОСА

- > Кнопка ВКЛ/ВЫКЛ
- Установка температуры
- Переключатель скорости вентилятора
- > Режим работы
- Автоматическое изменение положения заслонки
- > Тихая работа

FWZ-AT/AF

> Экономия энергии до 70% с технологией двигателя BLDC по сравнению с традиционной технологией

- Мнгновенная адаптация к изменениям температуры и относительной влажности
- > Низкие уровни шума при работе
- Очень гибкие решения: различные типоразмеры, возможности подвода труб и подключения клапанов
- > Требует очень мало места для установки

D					2-ТРУ	БНЫЙ			4-ТРУ	БНЫЙ	
Внутренний блок				02	03	06	08	02	03	06	08
Холодопроизводительность	Полная	Выс.	кВт	2,64	4,96	6,32	10,08	2,43	4,96	6,32	10,08
	Явная производительность	Выс.	кВт	1,95	3,60	4,80	7,43	2,25	3,60	4,80	7,43
Теплопроизводительность	2-трубн.	Выс.	кВт	3,47	6,40	7,51	11,18			-	
	4-трубн.	Выс.	кВт			-		2,46	4,19	6,45	10,06
Потребляемая мощность	Выс.		Вт	57,4	82,7	101,4	147	57,4	82,7	101,4	147
Ток	Выс.		Α	0,50	0,72	0,88	1,27	0,50	0,72	0,88	1,27
	Низк.		Α	0,0)5	0,07	0,09	0,	05	0,07	0,09
Размеры	Блок	ВхШхГ	мм	564x774x226	564x987x226	564x1194x226	564x1404x251	564x774x226	564x987x226	564x1194x226	564x1404x251
Bec	Блок		кг	20	25	31	41	21	26	33	44
Теплообменник	Объем воды		Л	0,7	1	1,4	2,1	0,7	1	1,4	2,1
Дополнительный теплообменник	Объем воды		Л			-		0,2	0,3	0,4	0,6
Расход воды	Охлаждение		л/ч	454	853	1084	1728	418	853	1084	1728
	Нагрев		л/ч	454	853	1084	1728	216	367	565	882
Потеря давления	Охлаждение		кПа	20	29	24	25	22	29	24	25
воды	Нагрев		кПа	16	23	19	20	11	9	14	45
Вентилятор	Тип					Центробежный	и́ многолопастн	ый, двусторонне	его всасывания		
	Расход воздуха	Выс.	м³/ч	560	900	1200	1660	560	900	1200	1660
Уровень звуковой мощности	Выс.		дБА	62	70	64	71	62	70	64	71
Подсоединение	Вода	Вход			1/2"		3/4"		1/2"		3/4"
труб		Выход			1/2"		3/4"		1/2"		3/4"
	Дренаж	нд	мм				1	6			
Электропитание	Фаза / Частота /	Напряжение	Гц/В				1~/50	0/230			

FWR-AT/AF

FWR-AT/AF

FWEC3A

- Для напольной или потолочной установки: идеальное решение для помещений без подвесных потолков
- Мнгновенная адаптация к изменениям температуры и относительной влажности
- > Экономия энергии до 70% с технологией двигателя BLDC по сравнению с традиционной технологией
- > Низкие уровни шума при работе
- Очень гибкие решения: различные типоразмеры, возможности подвода труб и подключения клапанов
- > Требует очень мало места для установки

					2-ТРУ	БНЫЙ			4-ТРУ	БНЫЙ	
Внутренний блок				02	03	06	08	02	03	06	08
Холодопроизводительность	Полная	Выс.	кВт	2,64	4,96	6,32	10,08	2,43	4,96	6,32	10,08
	Явная производительность	Выс.	кВт	1,95	3,60	4,80	7,43	2,25	3,60	4,80	7,43
Теплопроизводительность	2-трубн.	Выс.	кВт	3,47	6,40	7,51	11,18			-	
	4-трубн.	Выс.	кВт			-		2,46	4,19	6,45	10,06
Потребляемая мощность	Выс.		Вт	57,4	82,7	101,4	147	57,4	82,7	101,4	147
Ток	Выс.		Α	0,50	0,72	0,88	1,27	0,50	0,72	0,88	1,27
	Низк.		Α	0,	05	0,07	0,09	0,0	05	0,07	0,09
Размеры	Блок	ВхШхГ	мм	564x774x226	564x987x226	564x1194x226	564x1404x251	564x774x226	564x987x226	564x1194x226	564x1404x251
Bec	Блок		кг	21	27	33	44	22	28	35	46
Теплообменник	Объем воды		л	0,7	1	1,4	2,1	0,7	1	1,4	2,1
Дополнительный теплообменник	Объем воды		л			-		0,2	0,3	0,4	0,6
Расход воды	Охлаждение		л/ч	454	853	1084	1728	418	853	1084	1728
	Нагрев		л/ч	454	853	1084	1728	216	367	565	882
Потеря давления	Охлаждение		кПа	20	29	24	25	22	29	24	25
воды	Нагрев		кПа	16	23	19	20	11	9	14	45
Вентилятор	Тип			Центробежный	имноголопастні	ый, двусторонне	его всасывания	Центробежный	і многолопастн	ый, двусторонне	его всасывания
	Расход воздуха	Выс.	м³/ч	560	900	1200	1660	560	900	1200	1660
Уровень звуковой мощности	Выс.		дБА	62	70	64	71	62	70	64	71
Подсоединение	Вода	Вход			1/2"		3/4"		1/2"		3/4"
труб		Выход			1/2"		3/4"		1/2"		3/4"
Электропитание	Фаза / Частота /	Напряжение	Гц/В		1~/5	0/230			1~/5	0/230	

FWS-AT/AF

FWS-AT/AF

Отлично вписывается в любой интерьер: заметны только решетки

- > Экономия энергии до 70% с технологией двигателя BLDC по сравнению с традиционной технологией
- Мнгновенная адаптация к изменениям температуры и относительной влажности
- > Низкие уровни шума при работе
- Очень гибкие решения: различные типоразмеры, возможности подвода труб и подключения клапанов

					2-ТРУ	БНЫЙ			4-ТРУБ	НЫЙ	
Внутренний блок				02	03	06	08	02	03	06	08
Холодопроизводительность	Полная	Выс.	кВт	2,64	4,96	6,32	10,08	2,43	4,96	6,32	10,08
	Явная производительность	Выс.	кВт	1,95	3,60	4,80	7,43	2,25	3,60	4,80	7,43
Теплопроизводительность	2-трубн.	Выс.	кВт	3,47	6,40	7,51	11,18		-		
	4-трубн.	Выс.	кВт			-		2,46	4,19	6,45	10,06
Потребляемая мощность	Выс.		Вт	57,4	82,7	101,4	147	57,4	82,7	101,4	147
Ток	Выс.		Α	0,50	0,72	0,88	1,27	0,50	0,72	0,88	1,27
	Низк.		Α	0,	05	0,07	0,09	0,0	05	0,07	0,09
Размеры	Блок	ВхШхГ	мм	535x584x224	535x794x224	535x1004x224	535x1214x249	535x584x224	535x794x224	535x1004x224	535x1214x249
Bec	Блок		КГ	15	19	23	32	16	20	25	34
Теплообменник	Объем воды		Л	0,7	1	1,4	2,1	0,7	1	1,4	2,1
Дополнительный теплообменник	Объем воды		Л			-		0,2	0,3	0,4	0,6
Расход воды	Охлаждение		л/ч	454	853	1084	1728	418	853	1084	1728
	Нагрев		л/ч	454	853	1084	1728	216	367	565	882
Потеря давления	Охлаждение		кПа	20	29	24	25	22	29	24	25
воды	Нагрев		кПа	16	23	19	20	11	9	14	45
Вентилятор	Тип				Центро	обежный многол	попастный, двус	тороннего всасі	ывания		
	Расход воздуха	Выс.	м³/ч	560	900	1200	1660	560	900	1200	1660
Уровень звуковой мощности	Выс.		дБА	62	70	64	71	62	70	64	71
Подсоединение	Вода	Вход			1/2"		3/4"	1/	'2"	1/2"	3/4"
труб		Выход			1/2"		3/4"	1/	/2"	1/2"	3/4"
	Дренаж	нд	мм				17				
Электропитание	Фаза / Частота /	Напряжение	Гц/В				1~/50/230				

FWP-AT

FWEC3A

- > Отлично вписывается в любой интерьер: заметны только решетки для забора и подачи воздуха
- э Экономия энергии до 50% с технологией двигателя BLDC по сравнению с традиционной технологией
- Мнгновенная адаптация к изменениям температуры и относительной влажности
- > Низкие уровни шума при работе
- Очень гибкие решения: различные типоразмеры, возможности подвода труб и подключения клапанов

						2-ТРУ	БНЫЙ		
Внутренний блок				02	03	04	05	06	07
Холодопроизводительность	Полная	Выс.	кВт	2,61	3,14	3,49	5,08	5,45	6,47
	Явная производительность	Выс.	кВт	1,88	2,16	2,34	3,6	3,87	4,4
Теплопроизводительность	2-трубн.	Выс.	кВт	5,47	6,01	6,47	10,31	11,39	12,28
	4-трубн.	Выс.	кВт		3,14			5,99	
Потребляемая мощность	Выс.		Вт		46,4			80	
Размеры	Блок	ВхШхГ	мм		239x1039x609			239x1389x609	
Bec	Блок		КГ	23	24	26	31	33	35
	Эксплуатационн	ный вес	КГ	24	26	28	33	35	38
Теплообменник	Объем воды		Л	1,1	1,5	2,2	1,6	2,1	3,2
Дополнительный теплообменник	Объем воды		Л		0,4			0,6	
Расход воды	Охлаждение		л/ч	448	539	598	873	936	1111
	Нагрев		л/ч	480	527	567	904	999	1077
	Дополнительны	й теплообменник	л/ч		275			526	
Потеря давления	Охлаждение		кПа	8	14	11	15	8	14
воды	Нагрев		кПа	7	10	8	12	7	10
	Дополнительны	й теплообменник	кПа		3			5	
Вентилятор	Тип				Центробежні	ый с прямым приводо	ом и лопатками загн	утыми вперед	
	Расход воздуха	Выс.	м³/ч		400			800	
	Напор	Выс.	Па		71			65	
Уровень звуковой мощности	Выс.		дБА		55,6			60,6	
Уровень звукового давления	Выс.		дБА		44,1			49,1	
Подсоединение труб	Дренаж	нд	MM			1	6		
Подсоединение	Станд. теплообм	енник	дюйм			3,	/4		
водопровода	Доп. теплообме		дюйм			3,	/4		
Электропитание	Фаза / Частота /	Напряжение	Гц/В			1~/50	0/230		

E

ECFWMB6

- Система креплений для быстрой фиксации на стене
- Предлагаются предварительно собранные трехходовые /четырехпортовые двухпозиционные клапаны
- Комплекты клапанов изолированы, дополнительный дренажный поддон не требуется
- Комплекты клапанов включают балансировочные вентили и гнездо для датчика
- Быстрозажимные электрические соединения: дополнительные инструменты не требуются
- > Воздушный фильтр можно легко снять для очистки
- > Электрический нагреватель мощностью до 2 кВт
- Электрический нагреватель оснащен двумя терморегуляторами с защитой от перегрева

								2-ТРУ	БНЫЙ									4-ТРУ	БНЫЙ				
Внутренний блок				01	15	02	25	03	35	04	06	08	10	01	15	02	25	03	35	04	06	08	10
Холодопроизводительность	Полная	Выс.	кВт	1,54	1,74	1,96	2,42	2,93	3,51	4,33	4,77	6,71	8,02	1,46	1,69	1,79	2,38	2,87	3,46	4,26	4,67	6,64	7,88
	Явная производительность	Выс.	кВт	1,20	1,30	1,42	1,88	2,11	2,72	3,15	3,65	4,91	5,96	1,14	1,27	1,46	1,85	2,07	2,71	3,09	3,57	4,85	5,85
Теплопроизводительность	2-трубн.	Выс.	кВт	2,14	2,20	2,57	3,20	3,81	4,78	5,10	5,95	7,83	10,03						-				
	4-трубн.	Выс.	кВт						-					1,90	2,02	2,01	2,92	3,08	4,80	5,05	5,30	7,91	8,35
Потребляемая мощность	Выс.		Вт	37	5	3	57	56		98		182	244	37	5	3	57	56		98		182	244
Ток	Выс.		Α	0,17	0,	24	0,26	0,25	0,	44	0,43	0,82	1,10	0,17	0,	24	0,26	0,25	0,	44	0,43	0,82	1,10
	Средний		Α	0,13	0,	16	0,21	0,20	0,	29	0,31	0,57	0,76	0,13	0,	16	0,21	0,20	0,	29	0,31	0,57	0,76
	Низк.		Α	0,10	0,12	0,11	0,	14	0,	19	0,22	0,39	0,50	0,10	0,12	0,11	0,	14	0,	19	0,22	0,39	0,50
Размеры	Блок ВхШхГ мм			564	x774x	226	564x98	37x226	564	x1194>	(226	564x14	04x251	564	x774x	226	564x9	87x226	564	x1194	(226	564x14	04x251
Bec	Блок ваши ми			19	2	.0	2	5	3	0	31	4	1	20	2	1	2	:6	3	2	33	4	14
Теплообменник	Объем воды				,5	0	,7		1	1	,4	2	,1	0	,5	0	,7		1	1	,4	2	,1
Дополнительный теплообменник	Объем воды		л						-						0,2		0	,3		0,4		0),6
Расход воды	Охлаждение		л/ч	264	298	337	415	504	602	743	818	1152	1376	250	291	176	409	494	594	730	803	1138	1362
	Нагрев		л/ч	264	298	337	415	504	602	743	818	1152	1376	167	177	182	257	270	421	443	465	694	733
Потеря давления	Охлаждение		кПа	13	14	12	16	11	1	2	14	12	19	12	14	13	16	11	1	2	14	12	16
воды	Нагрев		кПа	11	12	10	13	9	1	0	12	10	16	6	8	7	4	5	9	12	10	3	30
Вентилятор	Тип								Цент	обежі	ный м	ноголо	пастн	ый, дву	/сторо	ннего	всасы	вания					
	Расход воздуха	Выс.	м³/ч	319	34	44	44	12	640	706	785	1011		307	330	327	432	431	628	690	763	998	1362
Уровень звуковой мощности	Расход воздуха Выс. м³/ч Выс. дБА			47	49	50	4	8	52	53	56	61	67	45	49	50	48	47	51	56	59	60	66
Подсоединение	Вода	Вход					1/	2"				3/	4"				1/	2"				3/	/4"
труб		Выход					1/	2"				3/	4"				1/	/2"				3/	/4"
	Дренаж	нд	MM										1	6									
Электропитание	Фаза / Частота /	Напряжение	Гц/В										1~/50	0/230									

FWL-DAT/DAF

FWL-DAT/DAF

ECFWMB6

- Комплекты клапанов изолированы, дополнительный дренажный поддон не требуется
- Воздушный фильтр можно легко снять для очистки
- Комплекты клапанов включают балансировочные вентили и гнездо для датчика
- Система креплений для быстрой фиксации на стене или потолке
- Предлагаются предварительно собранные трехходовые /четырехпортовые двухпозиционные клапаны
- Быстрозажимные электрические соединения: не требуется дополнительный инструмент

								2-ТРУ	БНЫЙ									4-ТРУ	БНЫЙ				
Внутренний блок				01	15	02	25	03	35	04	06	08	10	01	15	02	25	03	35	04	06	08	10
Холодопроизводительность	Полная	Выс.	кВт	1,54	1,74	1,96	2,42	2,93	3,51	4,33	4,77	6,71	8,02	1,46	1,69	1,79	2,38	2,87	3,46	4,26	4,67	6,64	7,88
	Явная производительность	Выс.	кВт	1,20	1,30	1,42	1,88	2,11	2,72	3,15	3,65	4,91	5,96	1,14	1,27	1,46	1,85	2,07	2,71	3,09	3,57	4,85	5,85
Теплопроизводительность	2-трубн.	Выс.	кВт	2,14	2,20	2,57	3,20	3,81	4,78	5,10	5,95	7,83	10,03						-				
	4-трубн.	Выс.	кВт						-					1,90	2,02	2,01	2,92	3,08	4,80	5,05	5,30	7,91	8,35
Потребляемая мощность	Выс.		Вт	37	5	3	57	56		98		182	244	37	5	3	57	56		98		182	244
Ток	Выс.		Α	0,17	0,2	24	0,26	0,25	0,	44	0,43	0,82	1,10	0,17	0,2	24	0,26	0,25	0,4	44	0,43	0,82	1,10
	Средний		Α	0,13	0,	16	0,21	0,20	0,:	29	0,31	0,57	0,76	0,13	0,	16	0,21	0,20	0,:	29	0,31	0,57	0,76
	Низк.			0,10	0,12	0,11	0,	14	0,	19	0,22	0,39	0,50	0,10	0,12	0,11	0,	14	0,	19	0,22	0,39	0,50
Размеры	лок ВхШхГ мм			564	x774x2	226	564x98	37x226	564	x1194>	(226	564x14	104x251	564	x774x2	226	564x98	87x226	564	x1194x	226	564x14	04x251
Bec	Блок				2	1	2	7	3	2	33	4	14	21	2	2	2	.8	24	34	35	4	6
Теплообменник	Объем воды		л	0,	5	0	,7		1	1	,4	2	,1	0,	5	0	,7		1	1,	,4	2	,1
Дополнительный теплообменник	Объем воды		л						-						0,2		0	,3		0,4		0	,6
Расход воды	Охлаждение		л/ч	264	298	337	415	504	602	743	818	1152	1376	250	291	176	409	494	594	730	803	1138	1362
	Нагрев		л/ч	264	298	337	415	504	602	743	818	1152	1376	167	177	182	257	270	421	443	465	694	733
Потеря давления	Охлаждение		кПа	13	14	12	16	11	1	2	14	12	19	12	14	13	16	11	1	2	14	12	16
воды	Нагрев		кПа	11	12	10	13	9	1	0	12	10	16	6	8	7	4	5	9	12	10	3	0
Вентилятор	Тип								Центр	обеж	ный мі	ноголо	пастн	ый, дву	сторо	ннего	всасы	вания					
	Расход воздуха				34	14	44	12	640	706	785	1011	1393	307	330	327	432	431	628	690	763	998	1362
Уровень звуковой мощности	Выс. дБА			47	49	50	4	8	52	53	56	61	67	45	49	50	48	47	51	56	59	60	66
Подсоединение	Вода						1/	2"				3,	/4"				1/	/2"				3/	4"
труб		Выход					1/	2"				3,	/4"				1/	/2"				3/	4"
Электропитание	Фаза / Частота /	Напряжение	Гц/В										1~/50)/230									

FWM-DAT/DAF

FWEC1, 2, 3A

- Воздушный фильтр можно легко снять для очистки
- Комплекты клапанов изолированы, дополнительный дренажный поддон не требуется
- Комплекты клапанов включают балансировочные вентили и гнездо для датчика
- Система креплений для быстрой фиксации на стене или потолке
- Предлагаются предварительно собранные трехходовые /четырехпортовые двухпозиционные клапаны
- > Быстрозажимные электрические соединения: не требуется дополнительный инструмент

								2-ТРУ	БНЫЙ									4-ТРУ	БНЫЙ				
Внутренний блок				01	15	02	25	03	35	04	06	08	10	01	15	02	25	03	35	04	06	08	10
Холодопроизводительность	Полная	Выс.	кВт	1,54	1,74	1,96	2,42	2,93	3,51	4,33	4,77	6,71	8,02	1,46	1,69	1,79	2,38	2,87	3,46	4,26	4,67	6,64	7,88
	Явная производительность	Выс.	кВт	1,20	1,30	1,42	1,88	2,11	2,72	3,15	3,65	4,91	5,96	1,14	1,27	1,46	1,85	2,07	2,71	3,09	3,57	4,85	5,85
Теплопроизводительность	2-трубн.	Выс.	кВт	2,14	2,20	2,57	3,20	3,81	4,78	5,10	5,95	7,83	10,03						-				
	4-трубн.	Выс.	кВт						-					1,90	2,02	2,01	2,92	3,08	4,80	5,05	5,30	7,91	8,35
Потребляемая мощность	Выс.		Вт	37	5	3	57	56		98		182	244	37	5	3	57	56		98		182	244
Ток	Выс.		Α	0,17	0,	24	0,26	0,25	0,	44	0,43	0,82	1,10	0,17	0,2	24	0,26	0,25	0,	44	0,43	0,82	1,10
	Средний		Α	0,13	0,	16	0,21	0,20	0,	29	0,31	0,57	0,76	0,13	0,	16	0,21	0,20	0,	29	0,31	0,57	0,76
	Низк.		Α	0,10	0,12	0,11	0,	14	0,	19	0,22	0,39	0,50	0,10	0,12	0,11	0,	14	0,	19	0,22	0,39	0,50
Размеры	Блок	мм	535	5x584x	224	535x79	94x224	535	x1004>	<224	535x12	14x249	535	x584x	224	535x7	94x224	535	x1004x	x224	535x12	14x249	
Bec	Блок					5	1	9		23		3	2	15	1	6	2	.0		25		3	4
Теплообменник	Объем воды		Л	0	,5	0	,7		1	1	,4	2	,1	0,	,5	0	,7		1	1	,4	2	,1
Дополнительный теплообменник	Объем воды		Л						-						0,2		0	,3		0,4		0	,6
Расход воды	Охлаждение		л/ч	264	298	337	415	504	602	743	818	1152	1376	250	291	176	409	494	594	730	803	1138	1362
	Нагрев		л/ч	264	298	337	415	504	602	743	818	1152	1376	167	177	182	257	270	421	443	465	694	733
Потеря давления	Охлаждение		кПа	13	14	12	16	11	1	2	14	12	19	12	14	13	16	11	1	2	14	12	16
воды	Нагрев		кПа	11	12	10	13	9	1	0	12	10	16	6	8	7	4	5	9	12	10	3	0
Вентилятор	Тип								Центр	обежі	ный мі	ноголо	пастн	ый, дву	сторо	ннего	всасы	вания					
	Расход воздуха	Выс.	м³/ч	319	34	44	44	12	640	706	785	1011	1393	307	330	327	432	431	628	690	763	998	1362
Уровень звуковой мощности	Выс.		дБА	47	49	50	4	8	52	53	56	61	67	45	49	50	48	47	51	56	59	60	66
Подсоединение	Вода	Вход					1/	2"				3/	4"				1/	′2″				3/	4"
труб		Выход					1/	2"				3/	4"				1/	′2″				3/	4"
	Дренаж	нд	мм										1	7									
Электропитание	Фаза / Частота /	Напряжение	Гц/В										1~/50	0/230									

FWD-AT/AF

FWD04AT/AF

FWEC1,2,3A

- Система креплений для быстрой фиксации на стене или потолке
- Адаптер для подсоединения прямоугольного воздуховода на стороне нагнетания
- э Электронный пульт управления с датчиком температуры воды доступен в стандартном, усовершенствованном и самом модернизированном варианте
- > Воздушный фильтр можно легко снять для очистки

						2	-ТРУБНЬ	IЙ					4	-ТРУБНЬ	ИЙ		
Внутренний блок				04	06	08	10	12	16	18	04	06	08	10	12	16	18
Холодопроизводительность	Полная	Выс.	кВт	3,90	6,20	7,80	8,82	11,90	16,40	18,30	3,90	6,20	7,80	8,82	11,90	16,40	18,30
	Явная производительность	Выс.	кВт	3,08	4,65	6,52	7,16	9,36	12,80	14,10	3,08	4,65	6,52	7,16	9,36	12,80	14,10
Теплопроизводительность	2-трубн.	Выс.	кВт	4,05	7,71	9,43	10,79	14,45	19,81	21,92				-			
	4-трубн.	Выс.	кВт				-				4,49	6,62	9,	21	15,86	21,	15
Потребляемая мощность	Выс.		Вт	234	349	4	43	714	1,1	197	234	349	44	43	714	1,1	97
Ток	Выс.		Α	0,95	1,58	1,	97	3,21	5,	37	0,95	1,58	1,	97	3,21	5,:	37
Размеры	Блок	ВхШхГ	мм	280x754x559	280x964x559	280x11	74x559	352x1174x718	352x13	84x718	280x754x559	280x964x559	280x11	74x559	352x1174x718	352x13	84x718
Bec	Блок кг			33	41	47	49	65	77	80	35	43	50	52	71	83	86
Теплообменник	Объем воды л			1,06	1,42	1,79	2,38	2,5	4,02	5,03	1,06	1,42	1,79	2,38	2,50	4,02	5,03
Дополнительный теплообменник	Объем воды		л				-				0,35	0,47	0,	59	1,42	1,	72
Расход воды	Охлаждение		л/ч	674	1064	1339	1514	2056	2833	3140	674	1064	1339	1514	2056	2833	3140
	Нагрев		л/ч	674	1064	1339	1514	2056	2833	3140	349	581	80	08	1392	18	56
Потеря давления	Охлаждение		кПа	17	2	4	16	26	34	45	17	2	4	16	26	34	45
воды	Нагрев		кПа	14	2	0	13	21	28	37	9	15	1	3	12	1	6
Вентилятор	Тип			Центроб	ежный м	ноголоп	астный, д	цвусторон	него вса	сывания	Центроб	ежный м	ноголопа	астный, д	двусторон	него вса	сывания
	Расход воздуха	Выс.	м³/ч	800	1250	16	00	2200	30	000	800	1250	16	00	2200	30	00
	Напор	Выс.	Па	66	58	68	64	97	145	134	63	53	63	59	92	138	128
Уровень звуковой мощности	1			66	69	7	2	74	7	'8	66	69	7	2	74	7	8
Подсоединение труб	б Дренаж НД мм						16							16			
Подсоединение водопровода	Станд. теплообм	дюйм			3/4				1			3/4			1		
Электропитание	Фаза / Частота /	Напряжение	Гц/В				1~/50/23	0						1~/50/23	0		

FWT-CT WRC-HPC

- Широкий рабочий диапазон
- > Простота монтажа и эксплуатации
- > 3-скоростной двигатель вентилятора
- > Центробежные вентиляторы с двусторонним всасыванием
- > Прекрасное распределение потоков воздуха
- Универсальность благодаря возможности изменять сторону подключения воды
- > Мощный поток воздуха
- > Самогасящаяся теплоизоляция 1-го класса
- > Съемный моющийся воздушный фильтр (самогасящийся, 1-го класса)
- Беспроводной пульт дистанционного управления, расстояние до 9 м, возможность использования проводного или упрощенного пульта управления
- Светодиодный индикатор показывает состояние работы блока (нормальное или ненормальное)

Внутренний блок				02	03	04	05	06
Холодопроизводительность	Полная	Выс.	кВт	2,43	2,70	3,31	4,54	5,28
	Явная производительность	Выс.	кВт	1,85	2,02	2,64	3,43	4,10
Теплопроизводительность	2-трубн.	Выс.	кВт	3,22	3,52	4,40	6,01	5,26
Потребляемая мощность	Выс.		Вт	31	32	42	53	72
Ток	Выс.		Α	0,19	0,20	0,21	0,29	0,34
	Средний		Α	0,18	0,20	0,20	0,26	0,32
	Низк.		Α	0,17	0,19	0,19	0,25	0,31
Размеры	Блок	ВхШхГ	MM	288x800x206	288x800x206	288x800x206	310x1065x224	310x1065x224
Bec	Блок		кг	9	9	9	14	14
	Эксплуатационн	ый вес	кг	9,5	9,6	9,6	15	15
Теплообменник	Объем воды		л	0,52	0,58	0,58	0,95	0,95
Расход воды	Охлаждение		л/ч	420	460	570	780	910
	Нагрев		л/ч	420	460	570	780	910
Потеря давления	Охлаждение		кПа	34	24	31	28	32
воды	Нагрев		кПа	29	20	25	25	29
Вентилятор	Тип			Поперечно-проточный вентилятор	Поперечно-проточный вентилятор	Поперечно-проточный вентилятор	Поперечно-проточный вентилятор	Поперечно-проточный вентилятор
	Расход воздуха	Выс.	м³/ч	442	476	629	866	1053
Уровень звуковой мощности	Выс.		дБА	45	48	55	55	59
Уровень звукового давления	Выс.		дБА	34	35	42	42	46
Подсоединение труб		нд	мм	19	19	19	19	19
Подсоединение водопровода	Станд. теплообм	енник	дюйм	1/2	1/2	1/2	1/2	1/2

FWEC1, 2, 3A

- Низкий уровень звуковой мощности за счет применения пластиковой крыльчатки, пластиковой улитки и улучшенному электродвигателю
- > Компактные размеры позволяют легко установить агрегат в узком пространстве между подвесным потолком и перекрытием
- > 3, 4 или 6-рядный охлаждающий теплообменник
- Дренажный поддон для сбора конденсата с теплообменника и регулирующих клапанов
- > 7-скоростной электродвигатель (с термозащитой на обмотках)
- Для всех 7-скоростных электродвигателей выполнена заводская разводка на клеммной колодке электрического блока
- > Воздушный фильтр можно легко снять для очистки

				2-ТРУБНЫЙ									
Внутренний блок	ОЛОК			02	03	04	05	06	07	08	09	10	
Холодопроизводительность	Полная	Выс.	кВт	2,61	3,14	3,49	5,08	5,45	6,47	7,57	8,67	10,34	
	Явная производительность	Выс.	кВт	1,88	2,16	2,34	3,6	3,87	4,4	5,23	5,96	6,9	
Теплопроизводительность	2-трубн.	Выс.	кВт	5,47	6,01	6,47	10,31	11,39	12,28	15,05	16,85	18,78	
	4-трубн.*	Выс.	кВт		3,14			5,99			12,8		
Потребляемая мощность	Выс.		Вт		79			154			294		
Ток	Выс.		Α		0,36			0,73			1,28		
Размеры	Блок	ВхШхГ	мм		239x1039x609	9		239x1389x609)		239x1739x609		
Bec	Блок		кг	23	24	26	31	33	35	43	45	48	
	Эксплуатационн	ный вес	кг	24	26	28	33	35	38	45	48	52	
Теплообменник	Объем воды		Л	1,1	1,5	2,2	1,6	2,1	3,2	2,1	2,8	4,2	
Дополнительный теплообменник	объем воды		Л	0,4		0,6			1,7				
Расход воды	Охлаждение		л/ч	448	539	598	873	936	1111	1299	1488	1774	
	Нагрев		л/ч	480	527	567	904	999	1077	1319	1479	1647	
	Дополнительны	ій теплообменник	л/ч	275		526				1123			
Потеря давления	Охлаждение		кПа	8	14	11	15	8	14	2	21	26	
воды	Нагрев		кПа	7	10	8	12	7	10	16	15	18	
	Дополнительны	ій теплообменник	кПа	3 5						8			
Вентилятор	Тип					Центробежн	ый с прямым г	приводом и ло	ом и лопатками загнутыми вперед				
	Расход воздуха	Выс.	м³/ч		400		800			1200			
	Напор	Выс.	Па		71			65			59		
Уровень звуковой мощности	Выс.		дБА		56			59			69		
Уровень звукового давления	Выс.		дБА	44,5			47,5				57,5		
Подсоединение труб	Дренаж	нд	MM					16					
Подсоединение	Станд. теплообы	иенник	дюйм					3/4					
водопровода	Доп. теплообме	нник	дюйм			3	/4				1		
Электропитание	Фаза / Частота / Напряжение Гц / В			1~/50/230									

^{* 4-}трубный= 2-трубный + опция дополнительного теплообменника

FWE-CT/CF

FWE-CT/CF

FWEC1,2,3A

- > Простота монтажа и эксплуатации
- > 4-скоростной двигатель вентилятора
- > Мощный поток воздуха
- > Выбор различных проводных пультов управления
- > Статическое давление до 50 Па
- > Широкий рабочий диапазон
- > Стандартный подвод воды слева и справа
- > Увеличенный дренажный поддон в стандартном исполнении
- > Клапан, устанавливаемый на заводе (слева и справа)
- › Нейлоновый фильтр класса G2
- > Полиэтиленовая изоляция

						2-ТРУБНЫЙ							4-ТРУБНЫЙ						
Внутренний блок	TK .			02	03	04	06	07	08	10	02	03	04	06	07	08	10		
Холодопроизводительность	Полная	Выс.	кВт	1,81	2,78	3,49	5,32	5,68	6,92	8,64	1,76	2,69	3,22	5,20	5,61	6,79	8,61		
	Явная производительность	Выс.	кВт	1,33	2,08	2,58	3,94	4,30	5,25	6,48	1,28	1,99	2,53	3,81	4,20	5,09	6,39		
Теплопроизводительность	2-трубн.	Выс.	кВт	2,31	3,67	4,44	6,65	7,62	9,18	11,10				-					
	4-трубн.	Выс.	кВт				-				1,94	3,06	3,76	5,37	6,42	7,52	9,16		
Потребляемая мощность	Выс.		Вт	39	54	59	93	128	145	180	39	54	59	93	128	145	180		
Ток	Оч. выс.		Α	0,206	0,309	0,372	0,533	0,731	0,811	1,031	0,206	0,309	0,372	0,533	0,731	0,811	1,031		
	Выс.		Α	0,174	0,243	0,265	0,430	0,575	0,648	0,780	0,174	0,243	0,265	0,430	0,575	0,648	0,780		
	Средний		Α	0,150	0,208	0,217	0,325	0,472	0,523	0,648	0,150	0,208	0,217	0,325	0,472	0,523	0,648		
	Низк.		Α	0,128	0,177	0,188	0,271	0,400	0,456	0,540	0,128	0,177	0,188	0,271	0,400	0,456	0,540		
Размеры	Блок	ВхШхГ	мм	253x590x705	253x590x875	253x590x1005	253x590x1205	253x590x1455	253x590x1555	253x590x1815	253x590x705	253x590x875	253x590x1005	253x590x1205	253x590x1455	253x590x1555	253x590x1815		
Bec	Блок		кг	17	20	24	28	37	39	46	18	22	25	30	40	41	49		
	Эксплуатационный вес		кг	17	20	24	28	37	39	46	18	22	25	30	40	41	49		
Теплообменник	Объем воды		л	0,74	1,02	1,24	1,56	1,97	2,14	2,56	0,74	1,02	1,24	1,56	1,97	2,14	2,56		
											0,25	0,34	0,41	0,52	0,66	0,71	0,85		
Расход воды	Охлаждение		л/ч	360	540	756	1044	1188	1368	1728	360	540	720	1044	1188	1332	1728		
	Нагрев		л/ч	252	360	504	684	828	936	1,188	108	180	216	324	432	468	576		
Потеря давления	Охлаждение		кПа	15,1	11,7	23,9	46,4	14,8	19,3	32,9	14,5	11,4	21,6	46,3	14,6	19,1	32,7		
воды	Нагрев		кПа	6,1	4,9	9,7	17,9	6,6	8,4	13,7	3,6	8,8	15,6	31,8	58,6	74,6	123		
Вентилятор	Тип			Центробежный (лопатка: вперед - кривая)							Центробежный (лопатка: вперед - кривая)								
	Расход воздуха	Выс.	м³/ч	311	518	619	926	1188	1413	1735	302.41	501,23	571,11	905.11	1173.36		1728.98		
Уровень звуковой мощности	Выс.		дБА	49	56	48	55	57	58	60	49	56	48	55	57	58	60		
Уровень звукового давления			дБА	39	46	38	45	47	48	49	39	46	38	45	47	48	49		
Подсоединение труб	111			19.05						19.05									
Подсоединение водопровода		иенник	дюйм		3/4									3/4					
			· · ·											3/4					
Электропитание	Фаза / Частота /	Напряжение	Гц/В	1~/50/220-240								1~	/50/220-2	240					

FWC-BT/BF

FWC-BT/BF

BRC315D7

BRC7F532F

- Круговое воздухораспределение на 360° обеспечивает равномерную температуру и распределение потоков
- Декоративная панель белого цвета в современном стиле (RAL9010)
- > Подмес свежего воздуха (опция)
- > Комфортная горизонтальная подача воздуха обеспечивает работу без сквозняков и предупреждает загрязнение потолка
- Возможность закрыть одну или две заслонки для монтажа в углу комнаты
- > Стандартный дренажный насос с высотой подъема 850мм

D			2-ТРУ	БНЫЙ		4-ТРУБНЫЙ						
Внутренний блок				06	07	08	09	06	07	08	09	
Холодопроизводительность	ъ Полная Выс. кВт			5,0	5,6	6,3	7,2	4,9	5,6	6,3	7,2	
	Явная производительность	Выс.	кВт	3,4	4,0	4,5	5,3	3,4	3,9	4,4	5,2	
Теплопроизводительность	2-трубн.	Выс.	кВт	6,3	7,1	8,3	9,5			-		
	4-трубн. Выс. кВт					-		6,2	6,8	7,8	8,8	
Потребляемая мощность	Выс. Вт		Вт	40	46	58	76	41	47	59	77	
Размеры	Блок	ВхШхГ	мм		288x84	40x840		288x840x840				
Bec	Блок		кг		2	6		29				
Потеря давления	Охлаждение		кПа	15	19	26	34	15	19	25	32	
воды	Нагрев		кПа	15	19	26	34	24	30	38	47	
Вентилятор	Тип				Турбове	нтилятор		Турбовентилятор				
	Расход воздуха	Выс.	м³/ч	1062	1236	1518	1776	1032	1200	1476	1746	
Уровень звуковой мощности	Выс.		дБА	36	39	44	49	36	39	44	49	
Уровень звукового давления	Выс.		дБА	24	28	32	37	24	28	32	37	
Подсоединение	Вода Вход Выход				3/4" ВЅР (вн	утр. резьба)		3/4" BSP (внутр. резьба)				
труб					3/4" ВЅР (вн	утр. резьба)		3/4" BSP (внутр. резьба)				
	Дренаж НД мм			VP2	5 (наруж. диам.	32, внутр. диам.	25)	VP25 (наруж. диам. 32, внутр. диам. 25)				
Электропитание	Фаза / Частота /	Напряжение	Гц/В		1~/50/2	220-240			1~/50/2	220-240		

BRC7F532F

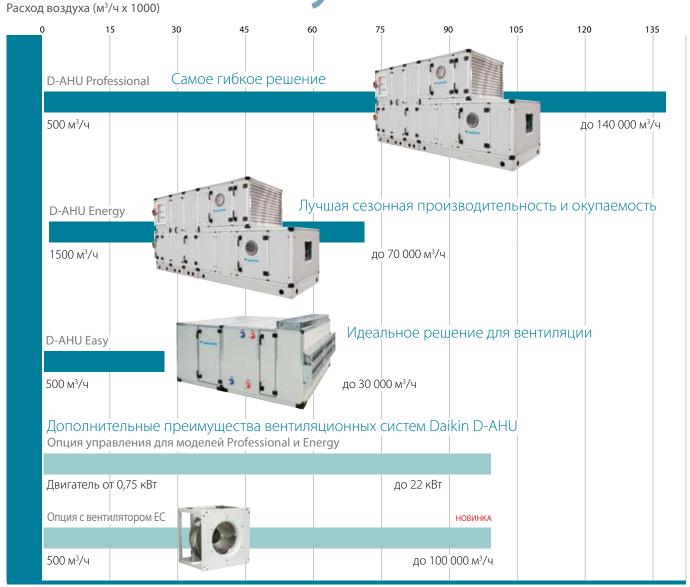
BRC315D7

- Декоративная панель белого цвета в современном стиле
- > Компактный корпус (570мм ширина и глубина) позволяет отлично устанавливать блок на потолке и сочетаться со стандартными архитектурными блоками, не разрезая потолочный кафель
- Качание жалюзи в горизонтальном направлении обеспечивает работу без сквозняков и предупреждает загрязнение потолка
- > Подмес свежего воздуха (опция)
- Возможность закрыть одну или две жалюзи для монтажа в углу комнаты
- > Стандартный дренажный насос с высотой подъема 750мм

		2-TP)	/БНЫЙ		4-ТРУБНЫЙ							
Внутренний блок	реннии олок				03	04	05	02	03	04	05	
Холодопроизводительность	Полная	Полная Выс. кВт			2,8	3,3	4,0	1,7 2,3 2,8		2,8	3,5	
	Явная производительность	Выс.	кВт	1,3	1,7	2,1	2,7		1,3	1,7	2,3	
Теплопроизводительность	2-трубн.	Выс.	кВт	2,6	3,4	4,1	5,3			-		
	4-трубн.	Выс.	кВт			-		3,1 3,3 3,9		3,9	4,8	
Потребляемая мощность	Выс.		Вт	6	7	70	89	67	62	74	93	
Размеры	Блок	ВхШхГ	мм	285x575x575				285x575x575				
Bec	Блок		кг	19				19	20			
Потеря давления	Охлаждение		кПа	6	19	31	42	6	13	21	33	
воды	Нагрев		кПа	6	19	31	42	12	6	9	13	
Вентилятор	Тип			Турбовентилятор				Турбовентилятор				
	Расход воздуха	Выс.	м³/ч	46	58	660	876	468	438	618	822	
Уровень звуковой мощности	Выс.		дБА	4	0	44	49	40	42	46	51	
Уровень звукового давления	Выс.		дБА	2	7	33	39	27	29	35	41	
Подсоединение	Вода	Вход		3/4" BSP (внутр. резьба)					3/4" BSP (внутр. резьба)			
труб	Выход			3/4" BSP (внутр. резьба)				3/4" ВЅР (внутр. резьба)				
	Дренаж	нд	мм	VP20 (наруж. диам. 26, внутр. диам. 20)			VP20 (наруж. диам. 26, внутр. диам. 20)					
Электропитание	Фаза / Частота /	Напряжение	Гц/В		1~/50/	220-440		1~/50/220-440				

MERCA

SRC-COA/HPA


WRC-HPC

- > Раздача и распределение воздуха в 4х направлениях
- > Компактный корпус (570мм ширина и глубина) позволяет устанавливать блок на потолке, не нарушая жесткость направляющих и не разрезая плитку
- Широкий рабочий диапазон
- > Забор воздуха снизу
- > Простота монтажа и эксплуатации
- Встроенный дренажный насос высокого давления подъемом 700мм
- > Центробежные вентиляторы с двусторонним всасыванием
- > Мощный поток воздуха
- > 3-скоростной двигатель вентилятора
- Инфракрасный пульт дистанционного управления, входящий в состав декоративной панели

Внутренний блок					2-ТРУБНЫЙ			
внутреннии олок				02	02 03 04			
Холодопроизводительность	Полная	Выс.	кВт	2,49	4,10	4,54		
	Явная производительность	Выс.	кВт	1,91	2,93	3,37		
Теплопроизводительность	2-трубн.	Выс.	кВт	3,52	4,69	5,28		
Потребляемая мощность	Выс.		Вт	63	64	79		
Ток	Выс.		Α	0,27	0,28	0,34		
Размеры	Блок	ВхШхГ	MM		250x570x570			
Bec	Блок		КГ	22	23			
	Эксплуатационн	ный вес	КГ	22		23		
Потеря давления	Охлаждение		кПа	19,00	27,00	29,00		
воды	Нагрев		кПа	17,00	24,00	27,00		
Вентилятор	Тип				Турбовентилятор с прямым приводом			
	Расход воздуха	Выс.	м³/ч	646	680	748		
Уровень звуковой мощности	Выс.		дБА	52	54	56		
Уровень звукового давления	Выс.		дБА	42	42 45			
Подсоединение труб	Дренаж	нд	мм		19,05			
Подсоединение водопровода	Станд. теплообы	менник	дюйм		3/4			
Электропитание	Фаза / Частота /	Напряжение	Гц/В		1~/50/220-440			

Вентиляционные установки

ВЕНТИЛЯЦИОННАЯ СИСТЕМА DAIKIN - ПРИНЦИП ПОЛНОГО РЕШЕНИЯ ДЛЯ МОДЕЛЬНОГО РЯДА D-AHU

АН U - ВЕНТИЛЯЦИОННАЯ УСТАНОВКА

ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ

ASTRA - является мощной программой, которую разработала компания Daikin для быстрого и качественного предоставления заказчику технического подбора и экономической оценки работы каждой вентиляционной установки. Это комплексный инструмент, позволяющий конфигурировать любой тип изделия и найти точное решение, соответствующее самым строгим требованиям проекта. В результате вы имеете полноценное коммерческое предложение, включающее все технические данные и чертежи, психрометрические диаграммы и характеристики вентиляторов. Но Daikin и на этом не останавливается, мы идем дальше.

МЕССАNO - другая мощная программа, которая разработана специально для быстрого преобразования коммерческого предложения в исполнительный заказ. Технические чертежи для отправки клиенту на одобрение, производственные исполнительные чертежи, список материалов, генерирование кода на каждый компонент - это лишь краткий перечень из многочисленных функций этой программы.

Интегрирование ASTRA-MECCANO позволило полностью автоматизировать процесс и свести к минимуму время формирования предложения и доставки и улучшить качество обслуживания наших клиентов.

СЕРТИФИКАЦИЯ EUROVENT

Компания Daikin принимает участие в программе сертификации EUROVENT вентиляционных установок. Она сертифицирована под номером 11.05003, который можно проверить на сайте www.eurovent-certification.com

МОДЕЛЬ БЛОКА-SP65		
Механическая прочность корпуса	D1	
Утечка воздуха из корпуса Отрицательное давление -400 Па	L1	
Утечка воздуха из корпуса Положительное давление +700 Па	LI	
Замена фильтра	F9	
Коэффициент теплопередачи	T2	
Тепловой мост корпуса	TB2	

D-AHU Professional

Большой ассортимент различных размеров

Двадцать семь (27) размеров, оптимизированных для самых выгодных решений и производственной стандартизации.

Бесконечные возможности

- Для специальных применений во всем мире. Система дает возможность подгонять размеры установки в зависимости от требований клиента с очень небольшим шагом всего 1см.
- Расход воздуха от 1100 м³/ч до 140 000 м³/ч
- Установки для всех размеров являются модульными, и изготовлены с учетом упрощения транспортировки и установки на месте эксплуатации.

Предварительные размеры - Габаритные размеры

Размер	Расход воздуха (м³/ч)	Высота - мм	Ширина - мм
1	1105	550	850
2	1550	600	900
3	1980	650	950
4	2600	780	1100
5	3170	780	1150
6	3550	800	1150
7	4000	800	1250
8	4800	850	1300
9	5560	900	1350
10	6600	900	1550
11	7950	1100	1550
12	9320	1100	1650
13	10 050	1150	1650

Размер	Расход воздуха (м³/ч)	Высота - мм	Ширина - мм
14	13 200	1400	1850
15	19 200	1500	2100
16	25 300	1580	2650
17	31 500	1750	2750
18	37 000	1800	3240
19	43 400	2100	3090
20	51 300	2250	3340
21	58 000	2250	3820
22	67 500	2400	4040
23	78 000	2450	4490
24	84 700	2700	4490
25	98 000	2850	4890
26	111 000	2850	5490
27	124 000	3000	5990

Огромный выбор размеров

Универсальные размеры для оптимизации вентиляционной установки

- На 1см шаг больше в ширину и длину
- Нет дополнительных затрат на блок нестандартных размеров
- Не требуется дополнительного времени на изготовление

Пример

ı	Расход воздуха (м³/ч)	Размер блока	Высота - мм	Ширина - мм	Фронтальная скорость м/сек
۱	15 000	СТД 15	1500	2100	1,95
ı	13000	1500x1750	1500	1750	2,46

Краткое описание принципа работы

Стандартные конфигурации вентиляционных установок Daikin обеспечивают самый широкий диапазон возможностей. Система предлагает многочисленные опции для настроек с учетом широкого выбора вариантов и дополнительных функций.

Сторона вытяжки

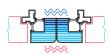
- 1 Карманный фильтр F5 с дифференциальным манометром заводской установки и навесной дверью.
- 2 Вентилятор вытяжного воздуха (с навесной дверью, открытием, контролем привода, установленной системой освещения и выключателем ВКЛ/ВЫКЛ)
- 3 Камера смешения с заслонкой и приводами заводской установки
- 4 Система рекуперации теплоты (пластинчатый или ротационный теплообменник)
- 5 Секция заслонок, включая вентиляционные решетки, приводы заводской установки

Вентиляторы

- С лопатками загнутыми вперед
- С лопатками загнутыми назад
- С лопатками
 аэродинамического
 профиля загнутыми назад
- > Приточный EC вентилятор

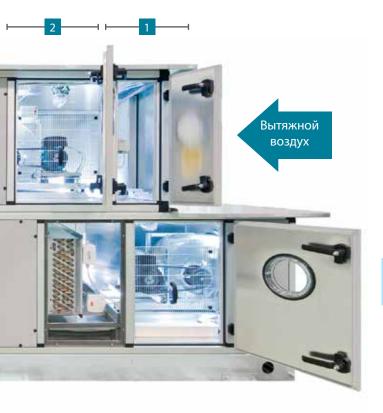
Теплообменники

- > Водяные
- > Паровые
- > Фреоновые
- > Перегретой воды
- > Электрические


Увлажнители

- Испарительный увлажнитель без насоса (потери воды)
- Испарительный увлажнитель с рециркуляционным насосом
- > Камера орошения без насоса (потери воды)
- Камера орошения с рециркуляционным насосом
- Паровой увлажнитель с генератором
- Паровой увлажнитель с местным распределителем
- > Оросительный увлажнитель

Уникальный секционный профиль воздушной камеры


- Отсутствие тепловых мостов для всей вентиляционной установки
- Гладкая внутренняя поверхность с улучшенным качественном внутреннего воздуха

Традиционная конструкция Новая конструкция Daikin

Сторона притока

- Секция заслонок, включая вентиляционные решетки, приводы заводской установки
- 2 Карманный фильтр F7 с дифференциальным манометром заводской установки и навесной дверью
- Система рекуперации теплоты (пластинчатый или роторный теплообменник)
- 4 Камера смешения с заслонкой и приводами заводской установки
- 5 R-410A с системой рекуперации теплоты, поддоном для конденсата из оцинкованной стали и капельной защитой
- 6 Вентилятор подачи воздуха (с навесной дверью, открытием, контролем привода, установленной системой освещения и переключателем ВКЛ/ВЫКЛ)

воздуха

Системы рекуперации теплоты

- Роторный рекуператор, энтальпийный или сорбционный
- > Пластинчатый теплообменник
- Рекуперативный теплообменник с промежуточным теплоносителем

Другая секция

- > Секция глушения
- Камера смешения с приводами или
- заслонками ручного управления
- > Промежуточные секции
- > Секция нагревателя

Фильтры

- Синтетический гофрированный фильтр
- Плоский фильтр с алюминиевой сеткой
- Жесткий карманный фильтр
- > Мягкий мешочный фильтр
- Высокоэффективный фильтр
- Угольный поглощающий фильтр
- Угольный дезодорирующий фильтр

Аксессуары

- Защита от образования льда
- > Манометры
- > Защита привода
- Крыша

...

Энергетический принцип

Компания Daikin является лидером производства энергоэффективных изделий, модель Energy представляет собой последние достижения в области вентиляционных установок. Блок D-AHU Energy разработан для оптимизации потребления электроэнергии и сведения к минимуму эксплуатационных расходов. По сравнению с традиционными вентиляционными установками, этот блок обеспечивает минимальное потребление энергии (в течение всего года) в зависимости от сезона и сокращение общих затрат на энергию.

Если взять весь срок службы вентиляционной установки и затраты на нее, мы можем легко выделить три основных источника расходов: первый - вложение денег при покупке оборудования, второй - текущее техобслуживание и третий - стоимость электроэнергии. В плане стоимости, затраты на электроэнергию в среднем составляют 70-80% общих расходов в течение всего срока службы, чтобы свести их к минимуму, мы создали наши вентиляционные установки для обеспечения исключительных механических эксплуатационных характеристик (согласно EN 1886) и избежания потерь энергии через корпус. Это требует программа EUROVENT.

ВЫСОКОЭФФЕКТИВНЫЕ КОМПОНЕНТЫ

ВЫСОКОЭФФЕКТИВНАЯ РЕКУПЕРАЦИЯ ТЕПЛОТЫ

Блок D-AHU Energy оснащен высокоэффективным оборудованием для рекуперации теплоты, и обеспечивает эффективность рекуперации минимум 65% и с возможностью достижения 90% рекуперации теплоты. Клиенты могут выбрать сами оборудование для установки, в частности секция рекуперации теплоты может быть оснащена:

конденсационным рекуператором энтальпийным рекуператором сорбционным рекуператором

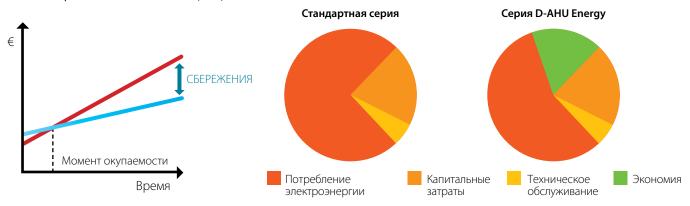
ВЫСОКОЭФФЕКТИВНЫЙ ДВИГАТЕЛЬ

Для серии Energy используются высокоэффективные двигатели, соответствующие требованиям EC 640/2009, которые позволяют снизить потребление энергии

ВЫСОКОЭФФЕКТИВНЫЙ ВЕНТИЛЯТОР

Вентиляторы сзагнутыми назадлопатками аэродинамического профиля, двойной ширины, двойного впуска обеспечивают эффективность до 85% и имеют усиленные подшипники для продолжительного срока службы.

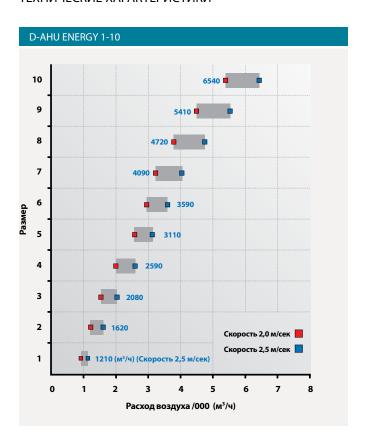
УПРАВЛЕНИЕ

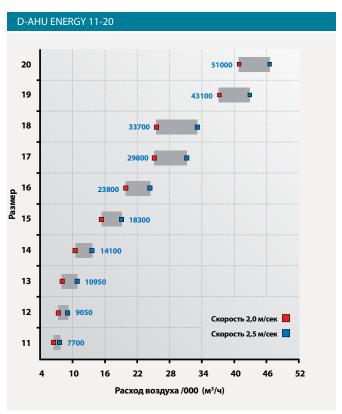

Компания Daikin разработала систему эффективного управления всеми компонентами в автоматическом режиме или при помощи внешней централизированной системы управления. В пакет входят панель управления, улучшенный микропроцессорный контроллер, датчики температуры, влажности и качества воздуха, а также многие другие функции.

ОКУПАЕМОСТЬ

Вентиляционная установка (АНU) является эффективной системой управления микроклиматом, даже если первоначальные инвестиции могут оказаться высокими. Экономия полученная в результате применения наших передовых конструкций и эффективности эксплуатации, гарантирует быстрый возврат вложенных средств. Наша модель АНU Energy разработана для обеспечения исключительных эксплуатационных характеристик, позволяющих уменьшить расходы на электроэнергию. Учитывая ожидаемый более чем 15-летний срок службы оборудования этот блок обеспечит значительную экономию, особенно при постоянном росте цен на электроэнергию.

РАСХОДЫ В ТЕЧЕНИЕ СРОКА СЛУЖБЫ ВЕНТИЛЯЦИОННОЙ УСТАНОВКИ (LCC)




Удельная мощность вентилятора (SFP) - это параметр, используемый для оценки потребления энергии вентиляционной установкой (AHU). Согласно EN 13053 и EN 13779 чем меньше показатель SFP, тем ниже потребление энергии всей вентиляционной установки. Блок Daikin D-AHU Energy разработан для обеспечения минимальной мощности вентилятора SFP, используя самые эффективные компоненты, разработанные для обеспечения идеального решения, соответствующего вашим потребностям. Блок D-AHU - это оптимизированное решение в соответствии с Европейской директивой на энергетические эксплуатационные характеристики зданий (EPBD), способствующей сокращению вредного воздействия на окружающую среду.

D-AHU Energy

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

D-AHL	J ENERGY 1-20		
Размер	Расход воздуха (м³/ч) Скорость 2,5 м/сек	Высота - мм	Ширина - мм
1	1210	580	720
2	1620	610	770
3	2080	680	820
4	2590	750	870
5	3110	750	990
6	3590	750	1100
7	4090	800	1110
8	4720	810	1240
9	5410	870	1270
10	6540	970	1370
11	7700	1050	1370
12	9050	1110	1470
13	10 950	1180	1620
14	14 100	1360	1720
15	18 300	1480	1970
16	23 800	1610	2270
17	29 800	1740	2570
18	33 700	1900	2710
19	43 100	2090	3060
20	51 000	2220	3360

Огромный выбор размеров

Универсальные размеры для оптимизации вентиляционной установки

- Шаг 1 см в ширину и высоту
- Нет дополнительных затрат на блок нестандартных размеров
- Не требуется дополнительное время на изготовление Пример

Расход воздуха (м³/ч)	Размер блока	Высота - мм	Ширина - мм	Фронтальная скорость м/сек
15 000	Размер 15	1480	1970	2,04
13 000	[1480 x 1660]	1480	1660	2,50

D-AHU Easy

Диапазон расхода воздуха от 500 м 3 /ч до 30 000 м 3 /ч * с возможностью выбора более подходящей фронтальной скорости в зависимости от требуемых условий.

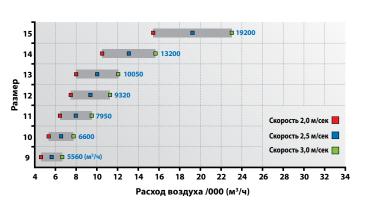
ПРЕДВАРИТЕЛЬНЫЕ РАЗМЕРЫ

Пятнадцать размеров, оптимизированных для достижения наилучшего компромисса между конкурентоспособностью и производственными стандартами

РАЗЛИЧНЫЕ РАЗМЕРЫ

Разработан для преодолевания установочных ограничений там, где применяются стандарты "высота х ширина". Система дает возможность разработать блок индивидуальных размеров путем наращивания 1см в среднем.

Предварительные размеры - Общие размеры

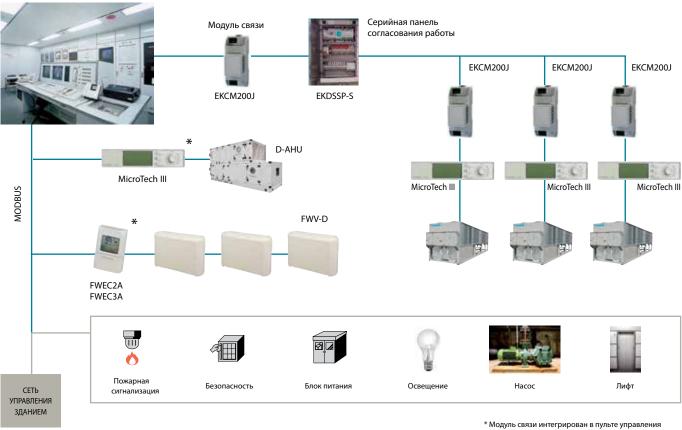

змер	Расход воздуха (м³/ч) Скорость 2,5 м/сек	Высота - мм	Ширина - мм					
Стд 1	1105	550	850	Пример				
Стд 2	1550	600	900					
Стд 3	1980	650	950	Расход воздуха	Размер блока	Высота - мм	Ширина - мм	Фронтальная ско
Стд 4	2600	780	1100	(M²/4)				м/сек
Стд 5	3170	780	1150	15 000	СТД 15	1500	2100	1,95
Стд 6	3550	800	1150		1500x1700	1500	1700	2,48
Стд 7	4000	800	1250					
Стд 8	4800	850	1300	Огром	ный выбо	ор разме	DOB	
Стд 9	5560	900	1350	0.100		- -	1	
Стд 10	6600	900	1550	Универсал	ьные размерь	ы для оптимиз	ации вентиля	ционной ус
Стд 11	7950	1100	1550		•	• •	•	. ,
Сід і і				• Ha TCM OC	ольше в ширин	ну и длину		
Стд 12	9320	1100	1650					
	9320 10 050	1100 1150	1650 1650	• Нет допол	лнительных за	трат на блок н	нестандартных	к размеров
Стд 12					лнительных за лнительного в			х размеров

^{*}Ограничения расхода воздуха от 500 м³/ч до 30 000 м³/ч подсчитаны, исходя из стандартных размеров (макс. 2150x2150) и фронтальной скорости катушки 2,5 м/сек

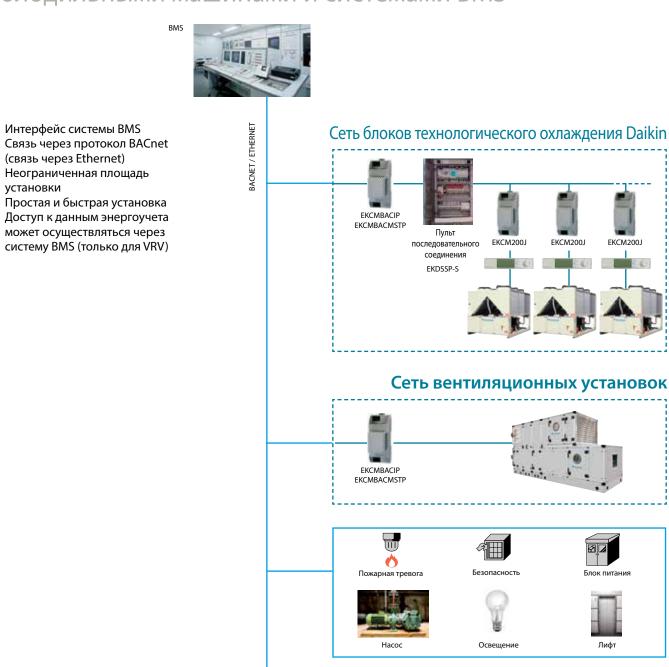
D-AHU Easy 1-8

8 7 6 6 6 6 6,5 7 7,5 Расход воздуха /000 (м³/ч)

D-AHU Easy 9-15


СИСТЕМЫ УПРАВЛЕНИЯ опции и аксессуары

СОДЕРЖАНИЕ


ИНТЕРФЕЙС MODBUS	191
	192
BACnet Interface	193
LonWorks Interface	
Опции и аксессуары	194
ХОЛОДИЛЬНЫЕ МАШИНЫ	194
ФАНКОЙЛЫ	198
ВЕНТИЛЯЦИОННЫЕ УСТАНОВКИ	202

Интеграция холодильных машин, фанкойлов и вентиляционных установок

в системах BMS через протокол modbus

Интегрированные системы управления для ПРЯМОГО СОЕДИНЕНИЯ между вентиляционными установками, холодильными машинами и системами BMS

Интеграция функций контроля и управления вентиляционных установок в открытую сеть по протоколу LonWorks

LON BMS

- > Интерфейс для соединения Lon c сетью LonWorks
- Связь через протокол Lon (витая пара)
- Неограниченная площадь установки
- Быстрая и простая установка

ОПЦИИ - ХОЛОДИЛЬНЫЕ МАШИНЫ

Опции - небольшие холодильные машины

							Встр	оенные гидравл	ические компо	ненты
Тип	Компр.	Хладаг.	Режим	Типоразмер	Типоразмер	Контакт одного насоса	Контакт сдвоенного насоса	Один насос	Два насоса	Высоконапорный насос
						OPSC	OPTC	OPSP	OPTP	OPHP
	DOTALL	D 4104	攀	EWAQ-ADVP	005-006-007			СТД		
	РОТАЦ.	R-410A	10	EWYQ-ADVP	005-006-007			СТД		
			纖	EWAQ-ACV3	009-010-011			СТД		
Z e		R-410A	福祉	EWAQ-ACW1	009-011-013			СТД		
Тен		N-410A	4	EWYQ-ACV3	009-010-011			СТД		
a X			3. #	EWYQ-ACW1	009-011-013			СТД		
50	яны R-410A ПРАЛЬНЫЙ		EUWAN-KBZW1	5-8-10-12-16-20-24						
o e	СПИРАЛЬНЫЙ		攀	EUWAP-KBZW1	5-8-10-12-16-20-24					
<u> </u>	CHIPATIONOIN			EUWAB-KBZW1	5-8-10-12-16-20-24					
, E				EUWYN-KBZW1	5-8-10-12-16-20-24					
B			1	EUWYP-KBZW1	5-8-10-12-16-20-24					
				EUWYB-KBZW1	5-8-10-12-16-20-24					
		R-410A	纅	EWAQ-DAYNN	080-100-130-150-180-210-240-260	•	•	•	•	•
		N-410A	糠	EWYQ-DAYNN	080-100-130-150-180-210-240-260	•	•	•	•	•
Водяное охлаждение	СПИРАЛЬНЫЙ	R-407C	*	EWWP-KBW1N	014-022-028-035-045-055-065					
Чиллерс выносным конденсатором	СПИРАЛЬНЫЙ	R-407C	攀	EWLP-KBW1N	012-020-026-030-040-055-065					

Опции - средние и большие холодильные машины

E Br A D 4 6 0 B Z X S
1 2 3 4 5 6 7 8 9 10 11

нвертор
 без инверторного управления
 Инверторное управление

S: Стандартный X: Выс.

S: Стандартный L: Низк. R: Уменьшенный

(s) Необходимо добавить OP12 и OP03 для соответствия требованиям шведского

национального законодательства 1992г.: 16

(1) Невозможная комбинация опциона: OPZH+OPZL

(2) Не доступен с опционом OPLN

Описание	Nº	EWAQ~BA EWYQ~BA		EWAD~CZ	EWAD~CF	EWWQ~B-	EWAD~D-	EWAD~E-	ERAD~E-	EWWD~G-XS EWWD~G-SS	EWLD~G-SS	EWWD~I-XS EWWD~I-SS	EWLD~I-SS	EWWD~FZXS	EWAD~C-	EWWD-J-SS EWLD-J-SS	EWWD~H-	EWAQ-E-	EWAQ-F-	EWYQ-F-	EWAQ-GZ	EWYQ-GZ
Полная рекуперация теплоты	01		Опция	Опция			Опция	Опция	Опция	Опция		Опция			Опция							
Полная рекуперация теплоты - один контур	02		Опция				Опция															
Частичная рекуперация теплоты	03		Опция	Опция		Опция	Опция	Опция	Опция	Опция	Опция	Опция			Опция			Опция	Опция	Опция		
Пускатель для прямого запуска (DOL)	04																	СТД	СТД	СТД		
Стартер компрессора Звезда-Треугольник (y - d)	05				СТД	СТД	СТД	СТД	СТД	СТД	СТД	СТД	СТД		СТД	СТД	СТД					
Плавный старт	06				Опция	Опция	Опция	Опция	Опция	Опция	Опция	Опция	Опция		Опция	Опция	Опция					
Версия с тепловым насосом	07									Опция		Опция					Опция					
Рассольная версия	08	Опция	Опция	Опция	Опция	Опция	Опция	Опция		Опция	Опция	Опция	Опция		Опция			Опция	Опция	Опция	Опция	Опция
Двойная уставка	10		СТД	СТД	стд	СТД	СТД	СТД	СТД	СТД	СТД	СТД	СТД		СТД	СТД	СТД	СТД	СТД	СТД	СТД	СТД
Реле тепловой защиты компрессора	11			СТД		Опция						Опция				Опция				Опция		
Размыкатели цепи вентиляторов с термореле	_		СТД				СТД	СТД	СТД										Опция			
Контроль фаз	13		СТД	СТД	СТД	СТД	СТД	СТД	СТД	СТД	СТД	СТД	СТД		СТД	СТД	СТЛ	Опция		Опция	Опция	Опция
Стартер компрессора с инверторным управлением	14		СТД	СТД			Опция							СТД								
	_				Опция	Опция		Опция	Опция	Опция	Опция	Опция	Опция		Опция	Опция	Опция	Опция	Опция	Опция	Опция	Опция
Электросчетчик	16													Опция								Опция
Конденсаторы для компенсации коэффициента мощности	17		3.14.171	2.14.01								Опция		5	Опция	3	Опция	3		Опция	3	34.171
Ограничение тока	19		Опшия	Опшиа			_			-		Опция		СТД		Опция			Опции	Опции		
Соединение VICTAULIC для испарителя	20		СТД	СТД	Опции		Опция	Опции	Опции	СТД	СТД	СТД	СТД	СТД	СТД	СТД	СТД	СТД	СТД	СТД	СТД	СТД
Соединение фланцем для испарителя	21		СІД	Опция	СТД	Сід	Опция			СІД	Сід	Сід	СІД	Сід	Опция	СІД	СІД	Сід	Сід	СІД	СІД	Сід
Комплект для бокового подсоединения труб соединение VICTAULIC (1 проход)				Опция	Сід		Опция								Опция		Опция					
Испаритель, морской гидроблок, соединение victaulic (2 ступень)	22													Опция			Опция					
Испаритель, морской гидроолок, соединение victaulic (2 ступень) Испаритель, морской гидроблок, соединение victaulic (3 ступень)	23													Опция			Опция					
испаритель, морскои гидроолок, соединение victacinic (з ступень) Комплект для бокового подсоединения труб соединение ФЛАНЦАМИ (1 проход)	-																Опция					
	_													0								
Комплект для бокового подсоединения труб соединение фланцами (2 ступень)	-													Опция			Опция					
Комплект для бокового подсоединения труб соединение фланцами (3 ступень)	_					0				0		_		0			Опция					
Комплект фланцевого соединения для конденсатора						Опция	CTD			Опция	СТП	Опция	СТП	Опция			Опция					
Расчетное давление на стороне испарителя по воде - 10 бар	27					СТД	СТД			СТД	СТД	СТД	СТД	СТД			СТД					
Расчетное давление на стороне испарителя по воде - 25 бар	28														e==	CT.	c=n			670	c=n	
Изоляция испарителя 20мм	29		Опция	СТД	СТД	Опция	СТД	Опция		Опция	Опция	Опция	Опция	СТД	СТД	СТД	СТД	СТД		СТД	СТД	СТД
Осевые вентиляторы с напором 100 па	30						Св.с зав.											-	_			
Осевые вентиляторы с напором 250 па	32						Св.с зав.											Опция	Опция			
Изоляция конденсатора 20мм	33						Опция			Опция		Опция		Опция		Опция	Опция		СТД			
	35		СТД				Св.с зав.															
Соединение VICTAULIC для конденсатора						Опция				Опция	Опция	Опция		СТД			СТД					
	37													Опция								
Комплект для бокового подсоединения труб соединение VICTAULIC (1 проход)																	Опция					
Конденсатор, комплект, соединение VICTAULIC (двухходовой)	38													Опция			Опция					
Конденсатор, комплект, соединение VICTAULIC (Зходовой)	39																Опция					
Конденсатор, комплект, соединение ФЛАНЦАМИ (1 проход)	40a																Опция					
Конденсатор, комплект, соединение ФЛАНЦАМИ (двухходовой)	40																Опция					
Конденсатор, комплект, соединение ФЛАНЦАМИ (Зходовой)	41																Опция					
Speedtrol (устройство управления скоростью вентилятора - вкл/выкл - до -18°C)	42			Опция			Опция	Опция	Опция						Опция			Опция	Опция		Опция	Опция
Защита теплообменника конденсатора	43		Опция	Опция			Опция	Опция	Опция						Опция			Опция	Опция	Опция	Опция	Опция
Защита поверхности испарителя	44			Опция											Опция			Опция	Опция	Опция	Опция	Опция
Трубки конденсатора Си-си	45		Опция	Опция			Опция	Опция	Опция						Опция				Опция			
Трубки конденсатора Cu-cu sn	46			Опция				Опция							Опция				Опция			
Расчетное давление на стороне конденсатора по воде - 16 бар						СТД			1	СТД		СТД		СТД			СТД			1		
Расчетное давление на стороне конденсатора по воде - 21 бар	_									1				1			1					
	-		Опция	Опция			Опция	Опция	Опция						Опция			Опция	Опция	СТД		СТД

	Регулировани	е шума и	давл	ения н	на выхс	де	Гемп. воді	ы на выхо	де испар	ителя (LW	/E)		3	лектри	чество)	(ладаге	HT		Конде	нсатор
Буферный бак	Низкий уровень	Инверто					ысокое со							Главн			рметр/		Двойной		порный кл			е решетки
• • •	шума	вентиля		ВЫ	соким Е		глик		-	иколя		испарител	Я	выключ			тметр	предохра	анительный	клапан сто	ороне всас			менников
OPBT	OPLN	OPII	F		OPHF		OP	ZH	(OPZL		OP10		OP5	2	O	P57		OP03		OP12	2	OP	CG
												СТД СТД												
												СТД												
												СТД												
												СТД												
							_			_		стд												
					•		•			•		•												
стд																								
										•		•												
CTD					•		•			•		•												
стд		•(2)			•		•			•		•		СТД	П						•(сек)		_
•		•(2)												CT							•(ceĸ			•
							•			•														
							•			•														
			F	WAQ~BA	EWAD-BZ						FD:-	EWWD~G-XS		EWWD~I-XS			mu	EWWD-J-SS						F14.5:-
Описание			MΩ	WYQ~BA	EWYD-BZ	EWAD~CZ	EWAD~CF	EWWQ~B-	EWAD~D-	EWAD~E-	ERAD~E-	EWWD~G-SS		EWWD~I-SS	EWLD~I-SS	EWWD~FZXS	EWAD~C-	EWLD-J-SS	ÉWWD∼H-	EWAQ-E-	EWAQ-F-	EWYQ-F-	EWAQ-GZ	EWYQ-GZ
	сатора Cu-ni 90-10		50					Опция				Опция		Опция				Опция						
Одноходовой			51									СТД		СТД		Опция		_	Опция					
Конденсатор			52 53											СТД Опция		СТД		Опция	СТД					
Конденсатор			53b																Опция					
Конденсатор			54													c=-								
	е реле давления воды на ко е реле давления воды на и		55 56						СТД							СТД СТД		Опция	Опция					
	е реле давления воды на ис 1й нагреватель исп			Опция	СТД	СТД	СТД	Опция	СТД	СТД	СТД					Сід	СТД	Опция	Опция	СТД	СТД	СТД	СТД	СТД
Реле протока	•		58		Опция	Опция		Опция				Опция	Опция	Опция	Опция		Опция	СТД	Опция	СТД	СТД	СТД	СТД	СТД
	конденсатора		59 60		СТП	СТП	СТП	СТП	СТП	СТП	СТП	СТП	СТП	СТП	СТП	Опция	СТП	СТП	Опция	СТП	СТД	СТП	CTD	CTD
	расширительный і нтиль на нагнетани		61		СТД СТД	СТД	СТД СТД	СТД Опция	СТД СТД	СТД СТД	СТД СТД	СТД СТД	СТД	Опция	СТД Опция	СТД	СТД СТД	СТД СТД	СТД СТД	СТД Опция	Опция	СТД Опция	Опция	СТД Опция
	тиль на всасывани		62		СТД			Опция	СТД	СТД	СТД	СТД	СТД		Опция	Опция		СТД						
	тороны высокого д		63				Опция	Опция			Опция	Опция	Опция	Опция	Опция	Опция							Опция	
	тороны низкого да меры по уменьшению		64		Опция	Опция	Опция		Опция	Опция							Опция	Опция	Опция	Опция	Опция	Опция	Опция	Опция
	ратуры атмосферн	<u> </u>	67		СТД	СТП	СТД		СТП	СТД	СТД						СТД			СТП	СТД	СТД	СТП	СТД
	ос заданного значе	ения				СТД	1	CTD	СТД			CTD	CTD	CTD	CTD	CTD		CTD	CTD	СТД			СТД	
Счетчик рабо	чего времени я общей неисправн	юсти	68		СТД СТД	СТД СТД	СТД СТД	СТД СТД	СТД СТД	СТД СТД	СТД СТД	СТД СТД	СТД	СТД СТД	СТД СТД	СТД СТД	СТД СТД	СТД СТД	СТД СТД	СТД СТД	СТД СТД	СТД СТД	СТД СТД	СТД СТД
	гранспортировки (ко		71			Опция				Опция				Опция		С.Д	Опция	- С.Д		Опция			Опция	
	паковочная короб	-	74		_	0		0	_	0	_	_	0	0	0	0	0	_	_	0	0	_	_	
	тивибрационная оі ионная система	пора	75 76		Опция	Опция	Опция	Опция	Опция	Опция	Опция			Опция			Опция	Опция		Опция	Опция	Опция	Опция	Опция
	нтивибрационная с	опора	77		Опция	Опция	Опция	Опции	Опция	Опция	Опция	Опции	Опции	Опции	Опции	Опции	Опция	Опции	Опции	Опция		Опция	Опция	Опция
	ежный насос (низки						Опция		Опция	Опция							Опция						Опция	Опция
п (жный насос (высоки кных насоса (низкий	, ,	79 C	лция	Опция	Опция			Опция	Опция Опция							Опция				Опция		Опция	Опция
	ных насоса (высокий		81		Опция				O TIGUE	Опция							Опции				Опция			онции
	присутствии заказч		82		0				0													0		
	без корпуса (500 л) без корпуса (1000 л		83		Опция Опция					Опция Опция													Опция Опция	
	600 л) с корпусом RAL		87		Опция					Опция													Опция	
	000 л) с корпусом RA		88		Опция				Опция	Опция										Опция	Опция	Опция	Опция	Опция
' '	, ограничение нагру гнал на внешнем уст		90		Опция	СТД	СТД	СТД	СТД	СТД	СТД	СТД	СТД	СТД	СТД	СТД	СТД	СТД	СТД	Опция	Опция	Опция	Опция	Опция
	клапан на 2 значения давлен		91		Опция	Опция	Опция	Опция	Опция	Опция	Опция	Опция	Опция	Опция	Опция	СТД	Опция	Опция	СТД	Опция	Опция	Опция		
	урный комплект для		93																					
	/рный комплект для 2 не выключатели комп		94 95			Опима	Опция		Опима	Опция	Опима						Опила	Опима	Опима	Опима	Опима	Опима	Опция	Опила
	е выключатели комп е выключатели венти		96		СТД	СТД	СТД		СТД	СТД	СТД						СТД	Спция	Спция	Опция	Кирпо	Опция		СТД
	лавного выключате	еля	97		СТД (16)		СТД	СТД	СТД	СТД	СТД	СТД	СТД	СТД	СТД		СТД	СТД	СТД	СТД	СТД	СТД	СТД	СТД
Аварийный о		POLITIMITATION 1	98 99		CTI (16)	СТД	СТД СТД	СТД	Опция		Опция	СТД	СТД	СТД	СТД		СТД Опция	СТД	СТД	Опина	Опция	Опина		
Бак сбора хла	ти вентилятора (+тихая работа в ідагента	у (вфонклина	100		СіД(10)	Опция			Опция		Опция						Опция			Опция	Спция	Спция		
Подвод воды	испарителя справа	1	101		Опция	Опция	Опция										Опция							
Реле заземле			102			Опция	Опция	Опция	Опция				Опция	Опция		0=::::	Опция	Опция		Опция	Опция	Опция	Опция	Опция
Испаритель 1 Испаритель д			103 103a											СТД	СІД	Опция СТД			Опция СТД					
Испаритель 3	-ходовой		103b													СТД			Опция					
	евого соединения для и	испарителя	104					Опция						Опция		Опция			Опция					
Ресивер жидк Быстрый пере			105			Опила	Опция						Опция		Опция		Опция	Опция						
	езапуск ратурный комплек	Т	111			Спция	Кирпо										Спция		Опция					
Комплект для	перевозки		112 C	Опция	Опция	Опция		Опция	Опция	Опция	Опция	Опция	Опция	Опция	Опция	Опция	Опция	Опция		Опция	Опция	Опция	Опция	Опция
Оптимизирован Комплект Nor	ное естественное охл сліс	аждение	113				Опция															Опция		Опция
Водяной филь			115																	СТД	СТД	СТД	СТД	СТД
Защитные панелі	и теплообменника конд		116				Опция			Опция							Опция			Опция	Опция	Опция	Опция	
Обработка теп.	лообменника Blygol	d	117		Опция	Опция	Опция		Опция	Опция	Опция						Опция			Опция	Опция	Опция		

АКСЕССУАРЫ - ХОЛОДИЛЬНЫЕ МАШИНЫ

						Чиллеры с воздуц	иным охлаждением		
	EWA/YQ009-011ACV3 EWA/YQ009-013ACW1	EUWA/Y*-KBZW1	EWA/YQ~BA*	EWA/YQ-DAYN	EWAD-E- ERAD-E-	EWAD~D-	EWA(Y)D~BZ	EWAD~C-	EWAD~CZ
Пульты		·		·					\ <u></u>
EKDSSP							•		
EKDSSP-S***					•	•		•	
EKDDSP					•	•	•	•	
EKPWPRO							•		
EKPWPROM									
Серийные карты	и Модули управления і	Модули							
EKAC10C		•							
EKACPG									
EKAC200A									
EKAC200J							•		
EKACBAC									
EKACLON							•		
EKACLONP									
EKACRS232									
EKACWEB									
EKACBACMSTP									
EKACBACCERT									
EKCM200J					•			•	
EKCMLON					•			•	
EKCMBACMSTP					•			•	
EKCMBACIP					<u> </u>			•	
Межсетевой инте	ndoŭs LON				•				
EKLONPG	русис сон								
	aveaeevan.								
Другие системы и EKCLWS	аксессуары								
EKCON									
EKCONUSB									
EKMODEM							•		
EKGSMOD							•		
							•		
EKRP1HB	•								
EKRUPCJ							•		
EKRUPCK									
EKRUPCS					•	•		•	•
EKPV2J							•		
EKPWPROEXT							•		
EKGWWEB							•		
EKGWMODEM							•		
EKBNPG									
EKBMSBNA									
EKBMSMBA									
EKRUMCA		•							
EKRUPC									
EKRUPG									
EHMC*									
EKRP1AHT			•						
DTA104A62			•						
EKRUAHTB			•						
Измерительные п	риборы								
EKGAU5/8KA		• (5-8)							
EKGAU10/12KA		• (10-12)							
EKGAU16KA		• (16)							
EKGAU20/24KA		• (20-24)							
BHGP26A1									
Плавный старт									
EKSS									
Буферный бак									
EKBT									
Комплект для вод	яных труб								
				• (080-210)					
EKGN210									
EKGN210 EKGN260				• (EWAQ240-260DAYN & EWYQ230-250DAYN)					

^{*} Для установки EKRUMCA на блок требуется установить EKAC10C.

^{*} EKAC10C допускает прямое соединение с системой MODBUS BMS

^{*} Для установки EKLONPG & EKBNPG => необходимо на блоке установить EKACPG.

			Холодильные машины с водяным охлаждением						
EWAD-CF	EWAQ-E-/F- EWYQ-F-	EWAQ-GZ EWYQ-GZ	EWW(L)P-KBW1N	EWW(L)D~G-	EWW(L)D~I-	EWWD~H-	EWWQ~B-	EWW(L)D~J-	DWSC & DWDC EWWD-FZXS
•	•	•		•	•	•			
•	•	•		•	•	•	•	•	•
									•
									•
									•
									•
									•
									:
									•
									•
•	•	•		•	•	•	•	•	
•	•	•		•	•	•	•	•	
•	•	•		•	•	•	•	•	
							-		
									•
									•
•	•	•		•	•	•	•	•	•
									:
									•
			•						
			(04 : 2:5)						
			• (014-045)						

АКСЕССУАРЫ - ФАНКОЙЛЫ

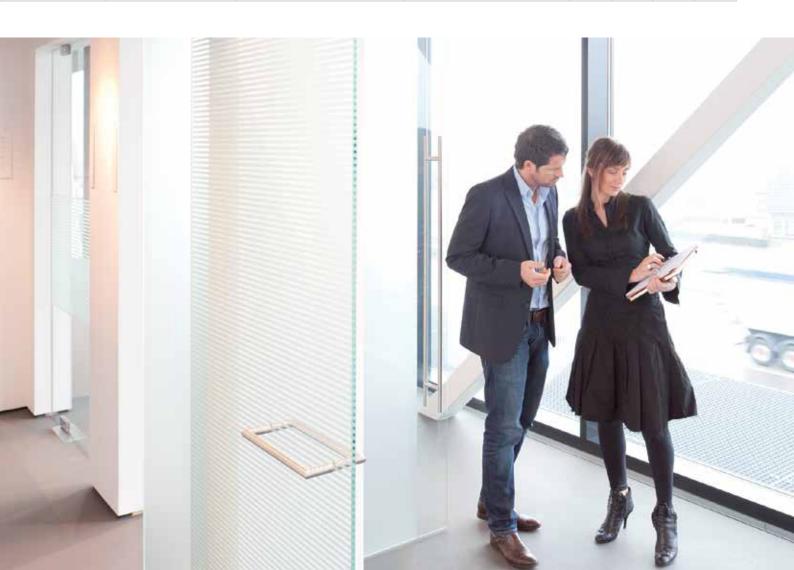
		FWM-DAT/DAF / FWL-DAT/DAF / FWV-DAT/DAF														FWD-AT/AF						
Сеть и системы управления	1	15	2	25	3	35	4	6		8		10	4	6	8	10	12	16		18		
Проводной пульт управления (стандартный)					FV	VEC1A										FWEC1A						
Проводной пульт управления (улучшенный)					FV	VEC2A										FWEC2A						
Проводной пульт управления (улучшенный плюс)					FV	VEC3A										FWEC3A						
Электромеханическая панель управления					ECI	FWMB6										-						
Встроенный установочный блок контроллера					FV	VECKA										-						
Комплект настенной установки для электронного пульта управления					FV	VFCKA							FWFCKA									
Проводной пульт управления (только охлаждение)		-							-													
Проводной пульт управления (тепловой насос)						-							-									
Беспроводной пульт управления (тепловой насос)						-							-									
Датчик температуры		FWTSKA									FWTSKA											
Датчик относительной влажности		FWHSKA									FWHSKA											
Термостат останова вентилятора		YFSTA6									YFSTA6											
Адаптер ведущий/ведомый					EP	IMSB6							EPIMSB6									
Модуль электропитания						-							- EPIB6					5				
Доп. плата для соединения MOD-bus						-							-									
Пульт ДУ - Инфракрасный - Н/Р						-										-						
Пульт ДУ - Инфракрасный - С/О						-										-						
Центральный пульт ДУ - Распределительная коробка с клеммой заземления (3 блока)						-										-						
Унифицированный пульт вкл/выкл - Распределительная коробка с клеммой заземления (3 блока)						-										-						
Таймер						-										-						
Микропроцессорный сенсорный пульт управления + электрический блок установки		-									-											
Дистанционный датчик		-							-													
Дистанционное управление "Вкл/Выкл" "Форсированное выкл."						-							-									
Плата управления клапаном						-										-						
Доп. плата для соединения MOD-bus						-										-						
Проводной адаптер для электрических приборов						-										-						

	FWM-DAT/DAF / FWL-DAT/DAF / FWV-DAT/DAF													
				FWM-	-DAT/DAF / F\									
Клапаны	1	15	2	25	3	35		4	6	8	10	4	6	8
2-трубный 230В ВКЛ/ВЫКЛ 3-ходовой клапан с электроприводом с монтажным комплектом			E2MV	/03A6				E2MV	/06A6	E2M	IV10A6	ED2MV04A6	ED2MV04A6 ED2l	
4-трубный 230В ВКЛ/ВЫКЛ 3-ходовой клапан с электроприводом с монтажным комплектом			E4M\	/03A6				E4MV	/06A6	E4M	IV10A6	ED4MV04A6		ED4MV10A6
24В ВКЛ-ВЫКЛ 2-ходовой клапан с электроприводом с монтажным комплектом (теплообменник для охлаждения)	ктроприводом с монтажным комплектом лообменник для охлаждения)									E2MV	V210A6			
2-трубный 230В ВКЛ/ВЫКЛ 3-ходовой клапан с электроприводом с упрощенным монтажным комплектом	апан с электроприводом с									-				
4-трубный 230В ВКЛ/ВЫКЛ 3-ходовой клапан с электроприводом с упрощенным монтажным комплектом	рубный 230В ВКЛ/ВЫКЛ 3-ходовой апан с электроприводом с										-			
2-трубный 24В ВКЛ/ВЫКЛ 3-ходовой клапан с электроприводом с монтажным комплектом	бный 24В ВКЛ/ВЫКЛ 3-ходовой ын с электроприводом с монтажным								-					
4-трубный 24В ВКЛ/ВЫКЛ 3-ходовой клапан с электроприводом с монтажным комплектом					-						-			
230В ВКЛ-ВЫКЛ 2-ходовой клапан с электроприводом с монтажным комплектом (теплообменник для охлаждения)					-						-			
230В ВКЛ-ВЫКЛ 2-ходовой клапан с электроприводом с монтажным комплектом (дополнительный теплообменник)									-					
24В ВКЛ-ВЫКЛ 2-ходовой клапан с электроприводом с монтажным комплектом (теплообменник для охлаждения)					-									
24В ВКЛ-ВЫКЛ 2-ходовой клапан с электроприводом с монтажным комплектом (дополнительный теплообменник)									-					

		FWB-BT		FWC-BT/BF	FWF-CT	FWF-BT/BF	FWT-CT	FWE-CT	FWE-CF
Клапаны	2-4	5-7	8-10	Все размеры	Все размеры	Все размеры	Все размеры	Все размеры	Все размеры
Комплект 3-ходового клапана вкл/выкл (2-трубный)	-	-	-	EKMV3C09B7	MCKCW2T3VN	EKMV3C09B	-	1 x EKMV3B10B7	-
Комплект 3-ходового клапана вкл/выкл (4-трубный)	-	-	-	2 x EKMV3C09B7	-	2 x EKMV3C09B7	-	-	2 x EKMV3B10B7
Комплект 2-ходового клапана вкл/выкл (дополнительный теплообменник)	E2MV	207A6	E2MV210A6	-	-	-	-	-	-
Комплект 3-ходового клапана вкл/выкл (дополнительный теплообменник)	E2MV	307A6	E2MV310A6	-	-	-	-	-	-
Комплект 2-ходового клапана вкл/выкл (2-трубный)	-	-	-	EKMV2C09B7	-	EKMV2C09B7	MWMJW2T2VN	1 x EKMV2B10C7	-
Комплект 2-ходового клапана вкл/выкл (4-трубный)	-	-	-	2 x EKMV2C09B7	-	2 x EKMV2C09B7	-	-	2 x EKMV2B10C7

	FWB-BT		FWT-CT	FWC-BT/BF	FWF-CT	FWF-BT/BF	FWE-CT/CF		FW	Z-AT		FWR-AT				FW	S-AT		
2-4	5-7	8-10	Все размеры	Все размеры	Все размеры	Все размеры	Все размеры	2	3	6	8	2	3	6	8	2	3	6	8
	FWEC1A		MERCA	BRC315D7	MERCA	BRC315D7	FWEC1A			-				-				-	
	FWEC2A		-	-	-	-	FWEC2A			-				-				-	
	FWEC3A		-	-	-	-	FWEC3A			-				-				-	
	-		-	-	-	-	-			-				-				-	
	-		-	-	-	-	-						FWE	C3A					
	FWFCKA		-	-	-	-	-								FW	FCKA			
	-		SRC-COB	-	SRC-COB	-	-			-				-		-			
	-		SRC-HPB	-	SRC-HPB	-	-			-				-		-			
	-		WRC-HPC	-	WRC-HPC	-	-	-					-		-				
	FWTSKA		-	-	-	-	-						FW	SKA					
	FWHSKA		-	-	-	-	-					FWH	ISKA						
	YFSTA6		-	-	-	-	-	-					-				-		
	EPIMSB6		-	-	-	-	-			-				-				-	
	-		-	EKFCMBCB7	-	EKFCMBCB7	-			-		-					-		
	-		-	EKFCMBCB	-	EKFCMBCB	-			-				-		-			
	-		-	BRC7F532F	-	BRC7F530	-			-				-				-	
	-		-	BRC7F533F	-	BRC7F531	-			-				-				-	
	-		-	DCS302CA51+KJB311A	-	DCS302CA51 + KJB311A	-			-				-				-	
	-		-	DCS301BA51 + KJB212A	-	DCS301BA51 + KJB212A	-			-				-				-	
	-		-	DST301BA51	-	DST301BA51	-			-				-				-	
	-		-	DCS601C51C+KJB411A	-	DCS601C51C + KJB411A	-	-					-				-		
	-		-	KRCS01-1	-	KRCS01-1	-	-				-				-			
	-		-	-	-	EKROROA	-	-		-					-				
	-		-	EKRP1C11	-	EKRP1C11	-	-		-				-					
	-		-	EKFCMBCB7	-	EKFCMBCB7	-	-					-				-		
	-		-	KRP2A52/KRP4AA53	-	KRP2A52/KRP4AA53	-	-			-				-				

FWD-AT/AF	=				FW2	Z-AT			FWF	R-AT			E4MV03A6 E4MV06A6 E4MV10 MVD03A6 E2MVD03A6 E2MVD06A6 E2MVD1 MVD03A6 E4MVD03A6 E4MVD06A6 E4MVD1 M2V03A6 E2M2V03A6 E2M2V06A6 E2M2V1 M2V03A6 E4M2V03A6 E4M2V06A6 E4M2V1 MV2B07A6 E2MV2B07A6 E2MV2B07A6 E2MV2B07A6 E2MV2B07A6		
10	12	16	18	2	3	6	8	2	3	6	8	2	3	6	8
	ED2MV12A6	ED2N	IV18A6	E2MV	/03A6	E2MV06A6	E2MV10A6	E2MV	/03A6	E2MV06A6	E2MV10A6	E2MV	'03A6	E2MV06A6	E2MV10A6
	2 x ED2MV12A6		2 x IV18A6	E4MV	/03A6	E4MV06A6	E4MV10A6	E4MV	/03A6	E4MV06A6	E4MV10A6	E4MV	'03A6	E4MV06A6	E4MV10A6
-				-	-	-	-	-	-	-	-	-	-	-	-
-				E2MVD03A6	E2MVD03A6	E2MVD06A6	E2MVD10A6	E2MVD03A6	E2MVD03A6	E2MVD06A6	E2MVD10A6	E2MVD03A6	E2MVD03A6	E2MVD06A6	E2MVD10A6
-				E4MVD03A6	E4MVD03A6	E4MVD06A6	E4MVD10A6	E4MVD03A6	E4MVD03A6	E4MVD06A6	E4MVD10A6	E4MVD03A6	E4MVD03A6	E4MVD06A6	E4MVD10A6
-				E2M2V03A6	E2M2V03A6	E2M2V06A6	E2M2V10A6	E2M2V03A6	E2M2V03A6	E2M2V06A6	E2M2V10A6	E2M2V03A6	E2M2V03A6	E2M2V06A6	E2M2V10A6
-				E42M2V03A6	E4M2V03A6	E4M2V06A6	E4M2V10A6	E4M2V03A6	E4M2V03A6	E4M2V06A6	E4M2V10A6	E4M2V03A6	E4M2V03A6	E4M2V06A6	E4M2V10A6
-				E2MV2B07A6	E2MV2B07A6	E2MV2B07A6	E2MV2B10A6	E2MV2B07A6	E2MV2B07A6	E2MV2B07A6	E2MV2B10A6	E2MV2B07A6	E2MV2B07A6	E2MV2B07A6	E2MV2B10A6
-									E2MV2	2B07A6					
-			E2M2V207A6	E2M2V207A6	E2M2V207A6	E2M2V210A6	E2M2V207A6	E2M2V207A6	E2M2V207A6	E2M2V210A6	E2M2V207A6	E2M2V207A6	E2M2V207A6	E2M2V210A6	
-									E2M2V	/207A6					


АКСЕССУАРЫ - ФАНКОЙЛЫ

			FW	/M-DAT/D	AF / FWL-C	OAT/DAF / I	WV-DAT/	DAF						FWD-AT/AF	
Другие аксессуары	1	15	2	25	3	35	4	6	8	10	4	6	8	10	
Электронагреватель (стандартный)	EEH	01A6	EEH	02A6	EEH	03A6	EEH	06A6	EEH	10A6	EDEH04A6	EDEHS06A6		EDEHS10A6	
Электронагреватель (большой)						-					EDEH04A6	EDEHB06A6		EDEHB10A6	
Воздухозабор свежего воздуха заслонки (ручной режим)		EFA	02A6		EFA	03A6	EFA	06A6	EFA.	EFA10A6 E		EDMFA06A6	EDMFA10A6		
Дополнительный однорядный теплообменник		ESRH	102A6		ESRI	103A6	ESRI	H06A6	ESRH	ESRH10A6				-	
Воздухозаборная и выпускная решетка + комплект крепления переднего фильтра для канальных типов		EAIDI	F02A6		EAIDFO	3A6 202	EAID	F06A6	EAIDI	EAIDF10A6				-	
Задняя панель для вертикальных блоков		ERPV	/02A6		ERPVO	3A6 40		/06A6 48	ERPV	10A6				-	
Опорные стойки (ножки= опорные скобы + крышки)				ESFVO	06A6 21				ESFV	10A6				-	
Опорные стойки + решетка		ESFVO	G02A6		ESFV	G03A6	ESFV	G06A6	ESFVO	G10A6				-	
Вертикальный дренажный поддон					EDI	PVB6							EDDPV10/	A6	
Горизонтальный дренажный поддон					EDF	PHB6							EDDPH10	A6	
Смеситель с круговыми соединениями						-							-		

Другие аксессуары	FWC-BT/BF	FWF-BT/BF		
Элемент уплотнения выпуска воздуха	KDBHQ55C140	KDBH44BA60		
Панельная прокладка	-	KDBQ44B60		
Фильтр длительного срока службы	KAFP551K160	KAFQ441BA60		
Комплект для забора свежего воздуха	KDDQ55C140-1/-2	KDDQ44XA60		
Корпус для дополнительнительных плат	KRP1H98	KRP1BA101		

Diverse :	FWF-CT	FWC-BT/BF	FWF-BT/BF
Пульты	Все размеры	Все размеры	Все размеры
Декоративная панель 600х600 (2-трубн.)	DCP600TC	-	-
Декоративная панель 4-ходовой клапан (RAL 9010 серые уплотнения)	-	-	BYFQ60B
Декоративная панель - стандартная (RAL 9010 - серые уплотнения) круглопоточный тип	-	BYCQ140CW1	-
Декоративная панель - белая (RAL 9010 - белые уплотнения) круглопоточный тип	-	BYCQ140CW1W	-

					FWB-BT			FWZ	Z-AT		FWR-AT					FWS	S-AT	
12		16	18	2-4	5-7	8-10	2	3	6	8	2	3	6	8	2	3	6	8
EDEHS12A6	E	DEHS18	3A6	Заг	водской мон	таж	EEH02A6	EEH03A6	EEH06A6	EEH10A6	EEH02A6	EEH03A6	EEH06A6	EEH10A6	EEH02A6	EEH03A6	EEH06A6	EEH10A6
EDEHB12A6	E	DEHB18	3A6		-				-				-				-	
EDMFA12A6	Е	DMFA1	8A6		-				-		-						-	
				EAH04A6	EAH07A6	EAH10A6	ESRH02A6	ESRH03A6	ESRH06A6	ESRH10A6	ESRH02A6 ESRH03A6 ESRH06A6 ESRH10A6			ESRH02A6	ESRH03A6	ESRH06A6	ESRH10A6	
					-				-		-			EAIDF02A6	EAIDF03A6	EAIDF06A6	EAIDF10A6	
					-		ERPV02A6	ERPV03A6	ERPV06A6	ERPV10A6	ERPV02A6	ERPV03A6	ERPV06A6	ERPV10A6			-	
					-		ESFV06A6	ESFV06A6	ESFV06A6	ESFV10A6			-		ESFV06A6	ESFV06A6	ESFV06A6	ESFV10A6
					-		ESFVG02A6	ESFVG03A6	ESFVG06A6	ESFVG10A6	-				-			
EDDP\	V18	3A6			-						EDPVA6							
EDDP	H18	BA6			-				-					EDP	PHA6			
- -	-				-				-				-		EPCC02A6	EPCC03A6	EPCC06A6	EPCC10A6

ОПЦИИ - ВЕНТИЛЯЦИОННЫЕ УСТАНОВКИ

D-AHU PROFESSIONAL

Тип конструкции	SP 65	SP 45	FP 50	FP 25
Материал	-	-	-	-
Алюминий	стандартный	стандартный	стандартный	стандартный
Анодированный алюминий	опция	опция	опция	опция
Алюминиевый профиль с воздушной камерой	опция	опция	опция	опция
Алюминиевый профиль с воздушной камерой	опция	опция	опция	опция
Угол	-	-	-	-
Материал	-	-	-	-
Нейлон армированный стекловолокном	стандартный	стандартный	стандартный	стандартный
Панель	-	-	-	-
Изоляция	-	-	-	-
Полиуретановая пена плотностью 45кг/м3, теплопроводность 0,020 W/м*К реакция на пожар класс 1	стандартный	стандартный	стандартный	стандартный
Стеклянная вата плотностью 90кг/м3, теплопроводность 0,037 W/м*K (при 20°C) реакция на пожар класс 0	опция	опция	опция	опция
Внешний листовой материал	-	-		-
Серый пластизоль покрытый оцинкованной сталью	стандартный	стандартный	стандартный	стандартный
Оцинкованная сталь предварительное покрытие	опция	опция	опция	опция
Оцинкованная сталь	опция	опция	опция	опция
Алюминий	опция	опция	опция	опция
Нержавеющая сталь AISI 304	опция	опция	опция	опция
Внутренний листовой материал	-	-	-	-
Оцинкованная сталь	стандартный	стандартный	стандартный	стандартный
Оцинкованная сталь предварительное покрытие	опция	опция	опция	опция
Серый пластизоль покрытый оцинкованной сталью	опция	опция	опция	опция
Алюминий	опция	опция	опция	опция
Нержавеющая сталь AISI 304	опция	опция	опция	опция
Стандартная рама	-	-	-	-
Материал	-	-	-	-
Алюминий	стандартный (размер от 1 до 17)	стандартный (размер от 1 до 17)	стандартный (размер от 1 до 17)	стандартный (размер от 1 до 17)
Оцинкованная сталь	стандартный (размер от 18 до 27)	стандартный (размер от 18 до 27)	стандартный (размер от 18 до 27)	стандартный (размер от 18 до 27)
Ручка	-	-	-	-
Материал	-	-	-	-
Нейлон армированный стекловолокном	стандартный	стандартный	стандартный	стандартный
Тип	-	-	-	-
Тип компрессора	стандартный	стандартный	стандартный	стандартный
Шарнирная функция (возможность снятия дверцы)	опция	опция	опция	опция

D-AHU EASY

Тип конструкции	DS 50	DS 25			
Профиль	-	-			
Материал	-	-			
Алюминий	Стандартный	Стандартный			
Угол	-	-			
Материал	-	-			
Нейлон армированный стекловолокном	Стандартный	Стандартный			
Панель	-	-			
Изоляция	-	-			
Полиуретановая пена теплопроводимостью 0,024 W/м*K	Стандартный (плотность 45 кг/м³)	Стандартный (плотность 47 кг/м³)			
Внешний листовой материал	-	-			
Оцинкованная сталь предварительное покрытие (RAL 9002)	Стандартный	Стандартный			
Внутренний листовой материал	-	-			
Оцинкованная сталь	Стандартный	Стандартный			
Стандартная рама	-	-			
Материал	-	-			
Алюминий	Стандартный	Стандартный			
Ручка	-	-			
Материал	-	-			
Нейлон армированный стекловолокном	Стандартный	Стандартный			
Тип	-	-			
Тип компрессора	Стандартный	Стандартный			

УСЛОВИЯ ИЗМЕРЕНИЯ

Все эксплуатационные характеристики, приведенные в каталоге, соответствуют стандарту Eurovent EN14511.


ХОЛОДИЛЬНЫЕ МАШИНЫ

С воздушным охлаждением	Охлаждение	Вода 7°С / 12°С	Температура наружного воздуха: 35°C
	Нагрев	Вода 45°С / 50°С	Температура наружного воздуха: 7°C
Конденсаторный блок	Точка росы на всасывании: 5°C		Температура наружного воздуха: 35°C
Холодильная машина с выносным	Охлаждение	Вода 7°С / 12°С	Температура конденсации: 45°C
конденсатором			Температура жидкости.: 40°C
С водяным охлаждением	Охлаждение	Вода испарителя: 7°C / 12°C	Вода конденсатора: 30°C / 35°C
	Нагрев	Вода испарителя: 7°C / 12°C	Вода конденсатора: 40°C / 45°C

ФАНКОЙЛЫ

Условия измерения (при номинальном расходе воздуха и ВСД): ОХЛАЖДЕНИЕ • температура воздуха на входе блока: 27° С/ 19° С, температура воды на входе в блок 7° С, температура воды на входе из блока 12° С - ОТОПЛЕНИЕ: температура в помещении 20° С, для 2-трубных блоков: температура воды на входе 50° С - расход воды такой же, как и для испытаний в режиме охлаждения, для 4-трубных блоков: температура воды на входе 70° С - температура воды на выходе 60° С.

ПРИМЕЧАНИЯ

Настоящий буклет составлен только для справочных целей и не является предложением, обязательным для выполнения компанией Dalkin Europe NV. Его содержание составлено компанией Dalkin Europe NV. на основании сведений, которыми она располатает. Компания не дает прямую или связанную гарантию относительно полноты, точности, надежности или соответствия конкретной цели содержания каталога, а также продуктов и услуг, представленных в нем. Техические характеристики могут быть изменены без предварительного уведомления. Компания Dalkin Europe NV. отказывается от какой-либо ответственности за прямые или косвенные убытки, понимаемые в самом широком смысле, вытежноцие из прямого или косвенного использования и/или трактовки данного буклета. На все содержание распространяется авторское право Dalkin Europe NV.

Компания Daikin Europe N.V. принимает участие в Программе сертификации Eurovent для жидкостных холодильных установок (LCP), вентиляционных установок (АНО) и фанкойлов (FCU). Проверьте текущий срож действия сертификата онлайн: www.eurovent-certification.com или перейдите к www.certiflash.com

Продукция Daikin распространяется компанией:

ECPRU14-400